首页> 外文OA文献 >Automatic classification of power quality disturbances using optimal feature selection based algorithm
【2h】

Automatic classification of power quality disturbances using optimal feature selection based algorithm

机译:使用基于最佳特征选择的算法对电能质量扰动进行自动分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The development of renewable energy sources and power electronic converters in conventional power systems leads to Power Quality (PQ) disturbances. This research aims at automatic detection and classification of single and multiple PQ disturbances using a novel optimal feature selection based on Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN). DWT is used for the extraction of useful features, which are used to distinguish among different PQ disturbances by an ANN classifier. The performance of the classifier solely depends on the feature vector used for the training. Therefore, this research is required for the constructive feature selection based classification system. In this study, an Artificial Bee Colony based Probabilistic Neural Network (ABCPNN) algorithm has been proposed for optimal feature selection. The most common types of single PQ disturbances include sag, swell, interruption, harmonics, oscillatory and impulsive transients, flicker, notch and spikes. Moreover, multiple disturbances consisting of combination of two disturbances are also considered. The DWT with multi-resolution analysis has been applied to decompose the PQ disturbance waveforms into detail and approximation coefficients at level eight using Daubechies wavelet family. Various types of statistical parameters of all the detail and approximation coefficients have been analysed for feature extraction, out of which the optimal features have been selected using ABC algorithm. The performance of the proposed algorithm has been analysed with different architectures of ANN such as multilayer perceptron and radial basis function neural network. The PNN has been found to be the most suitable classifier. The proposed algorithm is tested for both PQ disturbances obtained from the parametric equations and typical power distribution system models using MATLAB/Simulink and PSCAD/EMTDC. The PQ disturbances with uniformly distributed noise ranging from 20 to 50 dB have also been analysed. The experimental results show that the proposed ABC-PNN based approach is capable of efficiently eliminating unnecessary features to improve the accuracy and performance of the classifier.
机译:常规电力系统中可再生能源和电力电子转换器的发展导致电能质量(PQ)干扰。这项研究旨在使用基于离散小波变换(DWT)和人工神经网络(ANN)的新型最佳特征选择,对单个和多个PQ干扰进行自动检测和分类。 DWT用于提取有用的特征,这些特征通过ANN分类器用于区分不同的PQ干扰。分类器的性能仅取决于用于训练的特征向量。因此,该研究对于基于构造特征选择的分类系统是必需的。在这项研究中,提出了一种基于人工蜂群的概率神经网络(ABCPNN)算法,用于最优特征选择。单个PQ干扰的最常见类型包括下垂,骤升,中断,谐波,振荡和脉冲瞬变,闪烁,陷波和尖峰。此外,还考虑了由两种干扰组成的多种干扰。使用多分辨率分析的DWT已应用Daubechies小波族将PQ干扰波形分解为8级细节和近似系数。分析了所有细节和近似系数的各种统计参数,以进行特征提取,其中,使用ABC算法从中选择了最佳特征。在多层感知器和径向基函数神经网络等不同的人工神经网络架构下,对所提算法的性能进行了分析。已经发现PNN是最合适的分类器。使用MATLAB / Simulink和PSCAD / EMTDC,针对从参数方程式获得的PQ干扰和典型的配电系统模型,对所提出的算法进行了测试。还分析了噪声均匀分布范围为20至50 dB的PQ干扰。实验结果表明,所提出的基于ABC-PNN的方法能够有效消除不必要的特征,从而提高分类器的准确性和性能。

著录项

  • 作者

    Khokhar Suhail;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号