首页> 外文OA文献 >Surface modified magnesium oxides for production of biodiesel via heterogeneous base catalyst transesterification of palm oil
【2h】

Surface modified magnesium oxides for production of biodiesel via heterogeneous base catalyst transesterification of palm oil

机译:表面改性的氧化镁,用于通过棕榈油的非均相碱性催化剂酯交换反应生产生物柴油

摘要

Surface morphology of prepared alkaline earth metal oxide MgO contributes to the effect of basicity and reactivity in heterogeneous catalysis reactions. In this study, two methods to prepare surface modified MgO were employed for comparison. The first method is by conventional (CP-MgO) and the second method by aerogel (AP-MgO). The methods of preparation will differentiate the effect of size and morphology towards basicity and reactivity. For conventional method, commercial magnesium oxide (CM-MgO) was first transformed into its hydroxide, CP-Mg(OH)2 followed by heat under vacuum at 10-3 mbar. For aerogel method, magnesium ribbon was transformed into its magnesium hydroxide AP-Mg(OH)2 followed by heat and vacuum as in conventional method. In both methods, magnesium hydroxides were heated under vacuum at temperatures 100, 200, 300, 400, 500, 600 and 700°C respectively. The surface modified magnesium oxides were then characterized. Detailed characterization involving Fourier Transform Infra-Red (FTIR), Thermogravimetry Analysis (TGA), X-Ray Powder Diffraction (XRD), Nitrogen Gas Adsorption, Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-Ray (EDX) and basicity titration has allowed a rationale explanation for the high chemical reactivities. In this study, the prepared aerogel APMgO, had a high surface area compared to the conventional CP-MgO. This is however due to the smaller nano particle size of AP-MgO as compared to CP-MgO. The main factors of AP-MgO which contributes to the high reactivity are due to the pore volume and size distribution, unusual surface morphologies, and trace residual surface of –OH and –OCH3. This will then effect the percentage conversion of transesterification reaction when compared to CP-MgO. To study the reactivity both of the best prepared CP-MgO and AP-MgO were used in base heterogeneous catalyst for transesterification of palm oil to fatty acid methyl ester or also known as biodiesel. The resulting transesterification reaction of palm oil to biodiesel was then studied using Gas Chromatography equipped with Flame Ionization Detector (GCFID) and the highest percentage conversion of biodiesel of the best catalyst used was AP-MgO at 700 oC is 94.3%. Further analysis of the biodiesel products was then characterised using FTIR and Gas Chromatography equipped with Mass Spectrometry (GC-MS) to determine the components of complex organic mixtures.
机译:制备的碱土金属氧化物MgO的表面形态有助于非均相催化反应中碱度和反应性的影响。在这项研究中,采用了两种制备表面改性MgO的方法进行比较。第一种方法是常规方法(CP-MgO),第二种是气凝胶方法(AP-MgO)。制备方法将区分大小和形态对碱性和反应性的影响。对于常规方法,首先将商业氧化镁(CM-MgO)转化为其氢氧化物CP-Mg(OH)2,然后在真空下于10-3 mbar加热。对于气凝胶法,将镁带转变成其氢氧化镁AP-Mg(OH)2,然后按照常规方法进行加热和真空处理。在两种方法中,氢氧化镁分别在真空下分别在100、200、300、400、500、600和700℃的温度下加热。然后表征表面改性的氧化镁。详细的表征包括傅立叶变换红外(FTIR),热重分析(TGA),X射线粉末衍射(XRD),氮气吸附,场发射扫描电子显微镜(FESEM),能量色散X射线(EDX)和碱度滴定法为高化学反应性提供了理论依据。在这项研究中,与常规CP-MgO相比,制备的气凝胶APMgO具有较高的表面积。但是,这是由于与CP-MgO相比,AP-MgO的纳米粒度较小。 AP-MgO导致高反应性的主要因素是由于孔的体积和尺寸分布,异常的表面形态以及–OH和–OCH3的痕量残留表面。与CP-MgO相比,这将影响酯交换反应的转化率。为了研究反应性,将最佳制备的CP-MgO和AP-MgO都用于基础非均相催化剂中,以将棕榈油酯交换为脂肪酸甲酯或也称为生物柴油。然后使用配备有火焰离子化检测器(GCFID)的气相色谱法对棕榈油向生物柴油的酯交换反应进行了研究,在700 oC下使用的最佳催化剂是AP-MgO,生物柴油的最高转化率为94.3%。然后使用FTIR和配备质谱仪(GC-MS)的气相色谱法对生物柴油产品进行进一步分析,以确定复杂的有机混合物的成分。

著录项

  • 作者

    Samadi Nur Syazeila;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号