首页> 外文OA文献 >Pipeline leak detection system in a palm oil fractionation plant using artificial neural network
【2h】

Pipeline leak detection system in a palm oil fractionation plant using artificial neural network

机译:基于人工神经网络的棕榈油分馏厂管道泄漏检测系统。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A leak detection system for pipelines is designed and tested. Detection of leak in pipelines is an important task for economical and safety operation, loss prevention and environmental protection. Therefore, a leak detection of pipelines plays an important role in the plant safety operation. In this paper, a neural network based detection scheme integrating a neural Elman network dynamic predictor and a feedforward neural network fault classifier is proposed to overcome the problem of leak detection. The scheme was implemented to detect leakage in a palm oil fractionation process. To generate the required simulation data, Hysys.Plant dynamic process simulator was employed. The use of the output prediction error, between a neural network model and a non-linear dynamic process, as a residual for detecting leakage faults is analysed. A second neural network classifier is developed to detect the leak from the residuals generated, and results are presented to demonstrate the satisfactory detection of leakage achieved using this scheme that can detect leak as small as 0.1%.
机译:设计并测试了管道泄漏检测系统。检测管道泄漏是经济,安全运行,防止损失和环境保护的重要任务。因此,管道的泄漏检测在工厂安全运行中起着重要的作用。本文提出了一种基于神经网络的检测方案,该方案将神经Elman网络动态预测器和前馈神经网络故障分类器相结合,以解决泄漏检测的问题。实施该方案以检测棕榈油分馏过程中的泄漏。为了生成所需的仿真数据,使用了Hysys.Plant动态过程仿真器。分析了在神经网络模型和非线性动态过程之间使用输出预测误差作为检测泄漏故障的残差的情况。开发了第二个神经网络分类器,以从生成的残差中检测泄漏,并给出结果以证明使用此方案可以令人满意地检测泄漏,该方案可以检测低至0.1%的泄漏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号