首页> 外文OA文献 >Prediction of CO2 corrosion growth in submarine pipelines
【2h】

Prediction of CO2 corrosion growth in submarine pipelines

机译:海底管道中CO2腐蚀增长的预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The paper presents a probabilistic-based methodology for the assessment of a pipeline containing internal corrosion defects. Two different models have been used to predict the future CO2 corrosion rates namely a linear growth and the deWaard-Milliams models. A probabilistic approach is used to analyse the behaviour of corrosion data obtained from in-line intelligent (ILI) pigging inspections. The outcomes are parameters represented by their corresponding statistical distribution. Due to the availability of these statistical parameters, a Monte Carlo simulation is used to calculate the probability of failure of the pipeline due to bursting failure. The existence of corrosion may reduce the maximum capacity of the pipe, as such causing leakage and bursting when the operational pressure supersedes its threshold. From the analysis of the result, failure probability based on theoretical linear growth model exhibit slightly longer lifetime of the pipeline with three years interval compared to deWaard-Milliams model. This is due to higher mean value of corrosion growth rate estimated using the empirical deWaard-Milliams model. Both results are very useful in prolonging the lifetime of pipelines by having knowledge of the past to schedule the future maintenance work.
机译:本文提出了一种基于概率的方法来评估包含内部腐蚀缺陷的管道。已使用两种不同的模型来预测未来的CO2腐蚀速率,即线性增长和deWaard-Milliams模型。一种概率方法用于分析从在线智能(ILI)清管检查中获得的腐蚀数据的行为。结果是由其相应的统计分布表示的参数。由于这些统计参数的可用性,使用蒙特卡洛模拟来计算由于爆裂故障导致的管道故障概率。腐蚀的存在可能会降低管道的最大容量,从而在工作压力超过其阈值时引起泄漏和爆裂。从结果的分析来看,与deWaard-Milliams模型相比,基于理论线性增长模型的失效概率以3年为间隔显示出更长的管道寿命。这是由于使用经验DeWaard-Milliams模型估算的腐蚀增长率的平均值较高。通过了解过去来安排将来的维护工作,这两个结果对于延长管道的使用寿命非常有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号