首页> 外文OA文献 >A data mining analysis of College English Test (CET) results of Haojing College, China
【2h】

A data mining analysis of College English Test (CET) results of Haojing College, China

机译:昊jing学院大学英语考试成绩的数据挖掘分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The data mining technology is one of the hot issues of information technology research. Data mining has already used in many fields, such as bank, finance, insurance, and retail. But unfortunately, data mining technology is seldom used in the field of education. With the continuous enrollment of Chinese universities, more and more students go into university to study. Meanwhile, a mass of data were produced which about the students? basic information and their subject mark. There are still some deeply relationship among subject mark under cover. Using data mining technology into analysis of students? mark can find the real factors which affect their subject and then improve the teaching quality. In this paper, the theoretical knowledge of data mining was studied. Research and Application of data mining technology in student CET mark analysis is based on data mining technology research. Before the excavation, the paper established students? achievement analysis of data, and data cleaning, data conversion, data reduction, data preprocessing, processing vacancy data, the continuous-valued attribute discretization, to lay the foundation for further excavation. After comparison of various algorithms in data mining, association rules algorithm was chosen, which is suitable for student achievement analysis model Apriori algorithm to conduct students? CET mark analysis. In the final realization of the process, the relationship between CET mark and employment salary were found and also found the main factors which affect the CET mark. These finding are very useful which can improve the teaching quality.
机译:数据挖掘技术是信息技术研究的热点问题之一。数据挖掘已经在许多领域中使用,例如银行,金融,保险和零售。但是不幸的是,数据挖掘技术很少用于教育领域。随着中国大学的不断录取,越来越多的学生进入大学学习。同时,产生了大量关于学生的数据?基本信息及其主题标记。封面下的主题标记之间仍然存在着深深的关系。使用数据挖掘技术来分析学生?标记可以找到影响其学科的真正因素,从而提高教学质量。本文研究了数据挖掘的理论知识。数据挖掘技术在学生英语四级考试成绩分析中的研究与应用是基于数据挖掘技术的研究。在发掘之前,论文建立了学生?数据成果分析,数据清理,数据转换,数据约简,数据预处理,空缺数据处理,连续值属性离散化,为进一步挖掘奠定基础。通过对数据挖掘中各种算法的比较,选择了关联规则算法,该算法适合于学生成绩分析模型Apriori算法对学生的指导? CET标记分析。在该过程的最终实现中,发现了CET标记与就业工资之间的关系,并找到了影响CET标记的主要因素。这些发现非常有用,可以提高教学质量。

著录项

  • 作者

    Chen Dong;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号