首页> 外文OA文献 >Automatic clustering of generalized regression neural network by similarity index based fuzzy c-means clustering
【2h】

Automatic clustering of generalized regression neural network by similarity index based fuzzy c-means clustering

机译:基于相似度指标的模糊c均值聚类的广义回归神经网络自动聚类

摘要

In general regression neural networks (GRNN), one drawback is that the number of training vectors is proportional to the number of hidden nodes, thus a large number of training vectors produce a larger architecture, which is a major disadvantage for many applications. In this paper we proposed an efficient clustering technique referred to as 'similarity index fuzzy c-means clustering'. This technique uses the conventional fuzzy c-means clustering preceded by a technique based on similarity indexing to automatically cluster input data which are relevant to the system. The technique employs a one-pass similarity measures on the data to calculate the similarity index. This index indicates the degree of similarity in which data is clustered. Similar data then undergoes fuzzy c-means iterative process to determine their cluster centers. We applied the technique for system identification and modeling and found the results to be encouraging and efficient. This algorithm offers better performance than conventional algorithm which using energy only. The vocabulary for the experiment includes English digit from 1 to 9. These experimental results were conducted by 360 utterances from a male speaker. Experimental results show that the accuracy of the algorithm is quite acceptable.
机译:在一般回归神经网络(GRNN)中,一个缺点是训练向量的数量与隐藏节点的数量成正比,因此,大量训练向量会产生较大的体系结构,这对于许多应用程序来说是一个主要缺点。在本文中,我们提出了一种有效的聚类技术,称为“相似性指标模糊c均值聚类”。该技术使用传统的模糊c均值聚类,再基于基于相似性索引的技术自动对与系统相关的输入数据进行聚类。该技术对数据采用一遍相似性度量以计算相似性指标。该索引指示数据聚类的相似度。然后对相似数据进行模糊c均值迭代过程,以确定其聚类中心。我们将该技术用于系统识别和建模,发现结果令人鼓舞且高效。该算法比仅使用能量的常规算法提供更好的性能。该实验的词汇包括从1到9的英语数字。这些实验结果是通过男讲者的360次发音进行的。实验结果表明,该算法的准确性是可以接受的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号