首页> 外文OA文献 >Time frequency analysis of electrooculograph (EOG) signal of eye movement potentials based on wavelet energy distribution
【2h】

Time frequency analysis of electrooculograph (EOG) signal of eye movement potentials based on wavelet energy distribution

机译:基于小波能量分布的眼动电描记器信号时频分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, we describe the identification electroencephalography (EOG) signals of eye movement potentials by using wavelet algorithm which gives a lot of information than FFT. It shows the characteristic of the signals since energy is an important physical variable in signal analysis. The EOG signals are captured using electrodes place don the forehead around the eyes to record the eye movements. The wavelet features are used to determine the characteristic of eye movement waveform. The recorded data is composed of an eye movement toward four directions, i.e. upward, downward, left and right. The proposed analysis for each eyes signal is analyzed by using Wavelet Transform (WT) by comparing the energy distribution with the change of time and frequency of each signal. A wavelet scalogram is plotted to display the different percentages of energy for each wavelet coefficient towards different movement. From the result, it is proved that the different EOG signals exhibit differences in signals energy with their corresponding scale such as left with scale 6 (8-16Hz), right with scale 8 (2-4Hz), downward with scale 9 (1-2Hz) and upward with scale 7 (4-8Hz).
机译:在这项研究中,我们使用小波算法描述了眼动电位的识别脑电图(EOG)信号,该信号比FFT提供了更多信息。它显示了信号的特性,因为能量是信号分析中的重要物理变量。使用电极将EOG信号捕获到眼睛周围的额头上,以记录眼睛的运动。小波特征用于确定眼睛运动波形的特征。记录的数据由朝向四个方向即向上,向下,向左和向右的眼睛运动组成。通过使用小波变换(WT)将能量分布与每个信号的时间和频率的变化进行比较,来分析针对每个眼睛信号提出的分析。绘制小波比例图以显示每个小波系数朝着不同运动的不同百分比的能量。从结果可以证明,不同的EOG信号在信号能量上具有相应的标度,例如标度6(8-16Hz)左,标度8(2-4Hz)右,标度9(1- 2Hz)并向上扩展至刻度7(4-8Hz)。

著录项

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号