首页> 外文OA文献 >Simultaneous computation of model order and parameter estimation of a heating system based on particle swarm optimization for autoregressive with exogenous model
【2h】

Simultaneous computation of model order and parameter estimation of a heating system based on particle swarm optimization for autoregressive with exogenous model

机译:基于粒子群优化的外生模型自回归加热系统模型阶数与参数估计的同时计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

System identification is a method used to obtain a mathematical model of a system by performing analysis of input-output behavior of the system. In system identification, the procedure can be separated into four main parts. The first part is constructing an experiment to collect the input-output data of the system. Then, based on some criteria, the model order and structure are selected. The next part is to estimate the parameters of the model. For the final part, the mathematical model is verified. In this study, a new approach called simultaneous model order and parameter estimation (SMOPE), which is based on Particle Swarm Optimization (PSO), is proposed to combine model order selection and parameter estimation in one platform. In this approach, both the model order and the parameters of the system are searched simultaneously by a particle. Similar to other PSO implementation, a number of particles are utilized in the search process. In order to realize the simultaneous search of the best model order and the associated parameters, a suitable particle representation is employed. Based on a heating system case study, it is proven that the proposed approach is superior compared to some other methods in literature.
机译:系统识别是一种用于通过对系统的输入输出行为进行分析来获得系统数学模型的方法。在系统识别中,该过程可以分为四个主要部分。第一部分是构建一个实验来收集系统的输入输出数据。然后,基于一些标准,选择模型顺序和结构。下一部分是估计模型的参数。对于最后一部分,将验证数学模型。在这项研究中,提出了一种基于粒子群优化(PSO)的称为同时模型顺序和参数估计(SMOPE)的新方法,它将模型顺序选择和参数估计结合在一个平台上。在这种方法中,粒子同时搜索模型顺序和系统参数。与其他PSO实施类似,在搜索过程中使用了许多粒子。为了实现最佳模型顺序和相关参数的同时搜索,采用了合适的粒子表示。基于供热系统的案例研究,事实证明,与文献中的其他一些方法相比,该方法具有优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号