首页> 外文OA文献 >Network reconfiguration and distributed generation sizing in radial distribution network using particle swarm optimization
【2h】

Network reconfiguration and distributed generation sizing in radial distribution network using particle swarm optimization

机译:基于粒子群算法的径向配电网网络重构和分布式发电规模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The increasing energy demands are stressing the generation and transmission capabilities of the power system. The performance of distribution system becomes degraded due to increase of distribution losses and reduction in voltage magnitude. With addition of Distributed Generation (DG) in effective manner in the distribution system, these problems can be solved to enhance the performance of the system. This project report presents an effective method based on Particle swarm Optimization (PSO) to solve the network reconfiguration problem in the presence of DG with an objective of minimizing real power loss as well as improving voltage profile in distribution network. PSO is used to simultaneously reconfigure and optimum value of DG size in a radial distribution network. A method based on PSO algorithm to determine the minimum configuration is presented and their impact on the network real power losses and voltage profiles are investigated. The method has been tested on IEEE 33-bus test systems to demonstrate the performance and effectiveness of the proposed method. The results show that the PSO algorithm for real power loss minimization and voltage profile improvement to be the most effective compare to other methods.
机译:不断增长的能源需求正给电力系统的发电和输电能力带来压力。由于配电损耗的增加和电压幅值的降低,配电系统的性能下降。通过在配电系统中以有效的方式添加分布式发电(DG),可以解决这些问题以增强系统的性能。该项目报告提出了一种基于粒子群优化(PSO)的有效方法,可以解决存在DG时的网络重新配置问题,目的是最大程度地减少实际功率损耗并改善配电网络中的电压分布。 PSO用于同时重新配置径向分布网络中的DG大小并优化其最佳值。提出了一种基于PSO算法的最小配置确定方法,并研究了它们对网络实际功耗和电压分布的影响。该方法已经在IEEE 33总线测试系统上进行了测试,以证明该方法的性能和有效性。结果表明,与其他方法相比,用于最小化实际功率损耗和改善电压曲线的PSO算法最为有效。

著录项

  • 作者

    Aziz Fazli;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号