首页> 外文OA文献 >Spectrogram time-frequency analysis and classification of digital modulation signals
【2h】

Spectrogram time-frequency analysis and classification of digital modulation signals

机译:频谱图时频分析和数字调制信号分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A non coorperation communication environment such as in the HF(High Frequency)spectrum is when the signals present are unknown in nature.This is essentially true spectrum monitoring that is an activity in spectrum management and intelligence gathering.An instrument that is used for this purpose is a spectrum surveillance system whose features are the measurement of signal strengh and carrier frequency,the location of transmitters,estimation of modulation parameters and the classifications of signals.This paper describes the design and implement a system to analyze and clasify the basic types of digital modulation signals such as Amplitude Shift-Keying(ASK),Frequency Shift-Keying(FSK)and Phase Shift-Keying(PSK), Analysis method is based on the spectrogram time frequency analysis and a rule based approach is used as a classifier.From the time-frequency representation,the instantaneous frequency is estimated which is then used to estimate the modulation type its parameters.This information is further used as input to the rules based classifier.The robustness of the system is tested in the presence of additive white Gaussion noise.On the average the classsification accuracy is 90 precent for signal-to-noise ratio(SNR)of 2 dB.Thus,the result show that the system gives reliable analysis and classification of signals in an uncooperative communication environment even if the received signal is weak.
机译:非协作通信环境(例如在HF(高频)频谱中)是本质上未知的信号,这实际上是真正的频谱监视,是频谱管理和情报收集中的一项活动。是一种频谱监视系统,其功能包括信号强度和载波频率的测量,发射机的位置,调制参数的估计以及信号的分类。本文介绍了一种设计和实现的系统,用于分析和分类数字信号的基本类型调幅键控(ASK),频移键控(FSK)和相移键控(PSK)等调制信号,分析方法基于频谱图时频分析,基于规则的方法用作分类器。在时频表示中,估算瞬时频率,然后将瞬时频率用于估算其参数的调制类型。 n进一步用作基于规则的分类器的输入。在存在加性高斯白噪声的情况下测试系统的鲁棒性。对于2 dB的信噪比(SNR),平均分类精度为90%因此,结果表明,即使在接收信号较弱的情况下,该系统也可以在不合作的通信环境中对信号进行可靠的分析和分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号