首页> 外文OA文献 >Flow regime identification of particles conveying in pneumatic pipeline using electric charge tomography and neural network techniques
【2h】

Flow regime identification of particles conveying in pneumatic pipeline using electric charge tomography and neural network techniques

机译:电荷层析成像和神经网络技术识别气动管道中颗粒的流动状态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A plastic beads (solid particles) flow in a pipeline is a common means of transportation in industries. Monitoring and controlling materials flow through the pipeline is essential to ensure plant efficiency and safety of the system. The pipeline transportation used in this project makes use of electrodynamic sensors which are charge to voltage converters. The process flow data is captured fitting an array of 16 sensors around the circumference of the pipe to capture the inherent charge on the flowing solid materials. A high speed data acquisition card DAS1800HC is used as the interface between the sensors and a personal computer which processes the data. A Radial Basis Function (RBF) neural network based flow regime identifier program is developed in Matlab environment. Baffles of different shapes are inserted to artificially create expected flow regimes and data captured in this way are used in training and evaluating the network’s performance. The results of this work show significant improvments, the dataset which was check as the input gave good results, especially for full flow, three quarter flow and inverse quarter flow are 100%, and 95% has been succeed for each of quarter flow inverse three quarter flow and inverse half flow, and for the others flow regimes (center half and half flow) 90% succeed.
机译:在管道中流动的塑料珠(固体颗粒)是工业中的一种常见运输方式。监视和控制通过管道的物料流对于确保工厂效率和系统安全至关重要。该项目中使用的管道运输利用电动传感器将电荷转换成电压转换器。捕获过程流量数据,在管道圆周上安装16个传感器阵列,以捕获流动的固体材料上的固有电荷。高速数据采集卡DAS1800HC用作传感器和处理数据的个人计算机之间的接口。在Matlab环境下开发了基于径向基函数(RBF)神经网络的流态识别程序。插入不同形状的挡板可人为地创建预期的流量状况,并以此方式捕获的数据用于训练和评估网络的性能。这项工作的结果显示出显着的改进,在输入得到良好检查的情况下进行了检查,特别是对于全流量,四分之三流量和反四分之一流量均为100%,而四分之三流量中的每一个都成功了95%四分之一流量和反半流量,而对于其他流量模式(中心半流量和半流量)则成功90%。

著录项

  • 作者

    Ahmed Abuassal Ali Mohamed;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号