首页> 外文OA文献 >A modified particle swarm optimization based maximum power point tracking for photovoltaic converter system
【2h】

A modified particle swarm optimization based maximum power point tracking for photovoltaic converter system

机译:基于改进粒子群算法的光伏发电系统最大功率点跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis presents a modified Particle Swarm Optimization based Maximum Power Point Tracking for Photovoltaic Converter system. All over the world, many governments are striving to exploit the vast potential of renewable energy to meet the growing energy requirements mainly when the price of oil is high. Maximum Power Point Tracking (MPPT) is a method that ensures power generated in Photovoltaic (PV) systems is optimized under various conditions. Due to partial shading or change in irradiance and temperature conditions in PV, the power-voltage characteristics exhibit multiple local peaks; one such phenomenon is the global peak. These conditions make it very challenging for MPPT to locate the global maximum power point. Many MPPT algorithms have been proposed for this purpose. In this thesis, a modified Particle Swarm Optimisation (PSO)-based MPPT method for PV systems is proposed. Unlike the conventional PSO-based MPPT methods, the proposed method accelerates convergence of the PSO algorithm by consistently decreasing weighting factor, cognitive and social parameters thus reducing the steps of iterations and improved the tracking response time. The advantage of the proposed method is that it requires fewer search steps (converges to the desired solution in a reasonable time) compared to other MPPT methods. It requires only the idea of series cells; thus, it is system independent. The control scheme was first created in MATLAB/Simulink and compared with other MPPT methods and then validated using hardware implementation. The TMS320F28335 eZDSP board was used for implementing the developed control algorithm. The results show good performance in terms of speed of convergence and also guaranteed convergence to global MPP with faster time response compared to the other MPPT methods under typical conditions (partial shading, change in irradiance and temperature, load profile). This demonstrates the effectiveness of the proposed method.
机译:本文提出了一种改进的基于粒子群算法的光伏发电系统最大功率点跟踪算法。在世界各地,许多国家的政府正在努力开发可再生能源的巨大潜力,以满足主要在石油价格高昂时不断增长的能源需求。最大功率点跟踪(MPPT)是一种确保在各种条件下优化光伏(PV)系统中产生的功率的方法。由于PV中的部分阴影或辐照度和温度条件的变化,电源电压特性会出现多个局部峰值;全球高峰是这种现象之一。这些条件使MPPT定位全局最大功率点非常困难。为此已经提出了许多MPPT算法。本文提出了一种改进的基于粒子群算法的光伏发电系统MPPT方法。与传统的基于PSO的MPPT方法不同,该方法通过不断降低加权因子,认知和社交参数来加快PSO算法的收敛速度,从而减少了迭代步骤并改善了跟踪响应时间。与其他MPPT方法相比,该方法的优点是需要更少的搜索步骤(在合理的时间内收敛到所需的解决方案)。它只需要串联电池的想法。因此,它是系统独立的。该控制方案首先在MATLAB / Simulink中创建,然后与其他MPPT方法进行比较,然后使用硬件实现进行验证。 TMS320F28335 eZDSP板用于实现开发的控制算法。结果表明,在典型情况(局部阴影,辐照度和温度变化,负载曲线)下,与其他MPPT方法相比,在收敛速度方面表现出良好的性能,并保证了以更快的时间响应收敛到全局MPP。这证明了所提出方法的有效性。

著录项

  • 作者

    Abdulkadir Musa;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号