首页> 外文OA文献 >A modified binary particle swarm optimization for selecting the small subset of informative genes from gene expression data
【2h】

A modified binary particle swarm optimization for selecting the small subset of informative genes from gene expression data

机译:改进的二进制粒子群优化算法,可从基因表达数据中选择信息基因的小子集

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Gene expression data are expected to be of significant help in the development of efficient cancer diagnoses and classification platforms. In order to select a small subset of informative genes from the data for cancer classification, recently, many researchers are analyzing gene expression data using various computational intelligence methods. However, due to the small number of samples compared to the huge number of genes (high dimension), irrelevant genes, and noisy genes, many of the computational methods face difficulties to select the small subset. Thus, we propose an improved (modified) binary particle swarm optimization to select the small subset of informative genes that is relevant for the cancer classification. In this proposed method, we introduce particles’ speed for giving the rate at which a particle changes its position, and we propose a rule for updating particle’s positions. By performing experiments on ten different gene expression datasets, we have found that the performance of the proposed method is superior to other previous related works, including the conventional version of bi- nary particle swarm optimization (BPSO) in terms of classification accuracy and the number of selected genes. The proposed method also produces lower running times compared to BPSO
机译:基因表达数据有望在开发有效的癌症诊断和分类平台中发挥重要作用。为了从癌症分类数据中选择一小部分信息基因,最近,许多研究人员正在使用各种计算智能方法来分析基因表达数据。但是,由于与数量众多的基因(高维),无关的基因和嘈杂的基因相比,样本数量较少,因此许多计算方法都难以选择较小的子集。因此,我们提出了一种改进的(改进的)二进制粒子群优化算法,以选择与癌症分类相关的信息基因的小子集。在此建议的方法中,我们介绍了粒子的速度以给出粒子改变其位置的速率,并提出了更新粒子位置的规则。通过在十个不同的基因表达数据集上进行实验,我们发现该方法的性能优于其他以前的相关工作,包括传统版本的二元粒子群优化(BPSO)在分类准确性和数量方面选择的基因。与BPSO相比,该方法的运行时间也较短

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号