首页> 外文OA文献 >Feature base fusion for splicing forgery detection based on neuro fuzzy
【2h】

Feature base fusion for splicing forgery detection based on neuro fuzzy

机译:基于神经模糊的特征库融合伪造检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Most of image forensics researches have mainly focused on detection of artifacts introduced by a single processing tool. Thus, they have lead in the development of many specialized algorithms looking for one or more particular footprints under distinct settings. Naturally, the performance of such algorithms are not perfect and accordingly the provided output they might be noisy, inaccurate and only partially correct. Furthermore, in practical scenarios, a forged image is often the result of utilizing several tools made available by the image-processing softwares. Therefore, reliable tamper detection requires developing several tools to deal with various tampering scenarios. Fusion of forgery detection tools based on Fuzzy Inference System has been used before for addressing this problem. Adjusting the Membership Functions and defining proper fuzzy rules for getting optimal results are a time consuming processes. This can be accounted as main disadvantage of Fuzzy Inference Systems. In this study, a Neuro Fuzzy Inference System for fusion of forgery detection tools is developed. The Neural Network characteristic of Neuro Fuzzy Inference Systems provide appropriate tool for automatically adjusting Membership Functions. Moreover, initial Fuzzy inference system is generated based on fuzzy clustering techniques. The purposed framework is implemented and validated on a benchmark image splicing dataset in which three forgery detection tools are fused based on Adaptive Neuro Fuzzy Inference System. The final outcome of the purposed method reveals that applying Neuro Fuzzy Inference systems could be a proper approach for fusion of forgery detection tools. On the best of our knowledge, this is the first time that Neuro Fuzzy Inference Systems employed for fusion of forgery detection tools. Therefore, more researches should be conducted to make it more practical and to increase the effectiveness of methodology.
机译:大多数图像取证研究主要集中在检测由单个处理工具引入的伪像。因此,它们导致了许多专门算法的开发,这些算法在不同的设置下寻找一个或多个特定的足迹。自然地,这种算法的性能不是完美的,因此所提供的输出可能是嘈杂的,不准确的并且仅是部分正确的。此外,在实际情况下,伪造的图像通常是利用图像处理软件提供的几种工具的结果。因此,可靠的篡改检测需要开发几种工具来应对各种篡改情况。在解决该问题之前,已经使用基于模糊推理系统的伪造检测工具融合。调整成员资格函数并定义适当的模糊规则以获得最佳结果是一个耗时的过程。这可以解释为模糊推理系统的主要缺点。在这项研究中,开发了一种用于伪造检测工具融合的神经模糊推理系统。神经模糊推理系统的神经网络特性为自动调整成员资格功能提供了适当的工具。此外,基于模糊聚类技术生成了初始模糊推理系统。该目标框架是在基准图像拼接数据集上实现和验证的,该数据集基于自适应神经模糊推理系统融合了三个伪造检测工具。有目的方法的最终结果表明,应用神经模糊推理系统可能是融合伪造检测工具的适当方法。据我们所知,这是神经模糊推理系统首次用于伪造检测工具的融合。因此,应进行更多的研究以使其更加实用并提高方法的有效性。

著录项

  • 作者

    Hadigheh Habib Ghaffari;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号