首页> 外文OA文献 >Application of a hybrid of least square support vector machine and artificial bee colony for building load forecasting
【2h】

Application of a hybrid of least square support vector machine and artificial bee colony for building load forecasting

机译:最小二乘支持向量机与人工蜂群的混合在建筑负荷预测中的应用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate load forecasting is an important element for proper planning and management of electricity production. Although load forecasting has been an important area of research, methods for accurate load forecasting is still scarce in the literature. This paper presents a study on a hybrid load forecasting method that combines the Least Square Support Vector Machine (LSSVM) and Artificial Bee Colony (ABC) methods for building load forecasting. The performance of the LSSVM-ABC hybrid method was compared to the LSSVM method in building load forecasting problems and the results has shown that the hybrid method is able to substantially improve the load forecasting ability of the LSSVM method.
机译:准确的负荷预测是正确计划和管理电力生产的重要因素。尽管负荷预测一直是重要的研究领域,但文献中仍缺乏准确的负荷预测方法。本文提出了一种结合最小二乘支持向量机(LSSVM)和人工蜂群(ABC)方法进行建筑物负荷预测的混合负荷预测方法的研究。将LSSVM-ABC混合方法与LSSVM方法在建筑物负荷预测问题中的性能进行了比较,结果表明,该混合方法能够显着提高LSSVM方法的负荷预测能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号