首页> 外文OA文献 >Neural Nets for On-line Isolated Handwritten Character Recognition: A Comparative Study
【2h】

Neural Nets for On-line Isolated Handwritten Character Recognition: A Comparative Study

机译:神经网络用于在线隔离手写字符识别的比较研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Handwriting processing is a domain in great expansion which in the present day begins to see several industrial realizations. The field of personal computing has begun to make a transition from the desktop to handheld devices, thereby requiring input paradigms that are more suited for single hand entry than a keyboard. Online handwriting recognition allows for such input modalities. Handwriting recognition has always been a tough problem because of the handwriting variability, ambiguity and illegibility. This paper describes a simple approach involved in online handwriting recognition. Conventionally, the data obtained needs a lot of preprocessing including filtering, smoothing, slant removing and size normalization before recognition process. Instead of doing such lengthy preprocessing, this paper presents a simple approach to extract the useful character information. The whole process requires no preprocessing and size normalization. The method is applicable for off-line character recognition as well. This is a writer-independent system based on two neural net (NN) techniques: back propagation neural network (BPN) and counter propagation neural network (CPN). Performances of BPN and CPN are tested for upper-case English alphabets for a number of different styles from different peoples.
机译:手写处理是一个正在迅速扩展的领域,如今,它开始看到一些工业实现。个人计算领域已经开始从台式机过渡到手持式设备,因此需要比键盘更适合单手输入的输入范例。在线手写识别允许这种输入方式。由于笔迹的可变性,歧义性和难以辨认,笔迹识别一直是一个棘手的问题。本文介绍了一种在线手写识别中涉及的简单方法。传统上,在识别过程之前,获得的数据需要进行大量预处理,包括过滤,平滑,倾斜消除和大小归一化。本文没有进行冗长的预处理,而是提出了一种提取有用字符信息的简单方法。整个过程不需要预处理和尺寸标准化。该方法也适用于离线字符识别。这是一个基于两种神经网络(NN)技术的独立于作者的系统:反向传播神经网络(BPN)和反向传播神经网络(CPN)。 BPN和CPN的性能已针对大写英语字母进行了测试,这些字母来自不同民族,具有多种风格。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号