首页> 外文OA文献 >Modelling of crude oil prices using hybrid arima-garch model
【2h】

Modelling of crude oil prices using hybrid arima-garch model

机译:使用混合Arima-garch模型对原油价格进行建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Modelling of volatile data has become the area of interest in financial tim series recently. Volatility refers to the phenomenon where the conditional variance of the time series varies over time. The objective of this study is to compare the modelling performance of Generalized Autoregressive Conditional Heteroscedasticity (GARCH) and hybrid ARIMA-GARCH model for the prices of crude oil. Eviews and Minitab software are used to analyze the data. The models investigated are GARCH and hybrid ARIMA-GARCH model. In parameter estimation, Maximum Likelihood Estimation (MLE) is the preferred technique for GARCH models while Ordinary Least Squares Estimation (OLS) and MLE will be used for hybrid ARIMA-GARCH models. The goodness of fit of the model is measured using Akaike’s Information Criterion (AIC). The diagnostic checking is conducted to validate the goodness of fit of the model using Jarque-Bera test, Serial Correlation test and Heteroskedasticity test. Forecasting accuracies for both models are assessed using Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). The model which gives the lowest measure of error is considered to be the most appropriate model. Empirical results indicate that modelling using hybrid model has smaller AIC, MAE and MAPE values compared to GARCH model. It can be concluded that hybrid ARIMA-GARCH model is better in modelling crude oil prices data compared to GARCH model
机译:易变数据的建模最近已成为金融时报系列的关注领域。波动率是指时间序列的条件方差随时间变化的现象。本研究的目的是针对原油价格比较广义自回归条件异方差(GARCH)和混合ARIMA-GARCH模型的建模性能。 Eviews和Minitab软件用于分析数据。研究的模型是GARCH和ARIMA-GARCH混合模型。在参数估计中,最大似然估计(MLE)是GARCH模型的首选技术,而普通最小二乘估计(OLS)和MLE将用于混合ARIMA-GARCH模型。使用Akaike的信息标准(AIC)衡量模型的拟合优度。使用Jarque-Bera检验,序列相关检验和异方差检验进行诊断检查,以验证模型的拟合优度。使用平均绝对误差(MAE)和平均绝对百分比误差(MAPE)评估两个模型的预测准确性。给出最小误差量度的模型被认为是最合适的模型。实证结果表明,与GARCH模型相比,使用混合模型进行建模的AIC,MAE和MAPE值更小。可以得出结论,与GARCH模型相比,混合ARIMA-GARCH模型在原油价格数据建模方面更好

著录项

  • 作者

    Hashim Napishah;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号