首页> 外文OA文献 >Classification of aircraft images using different architectures of radial basis function neural network : a performance comparison
【2h】

Classification of aircraft images using different architectures of radial basis function neural network : a performance comparison

机译:使用径向基函数神经网络不同结构的飞机图像分类:性能比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Four Radial Basis Network architectures are evaluated for their performance in terms of classification accuracy and computation time. The architectures are Radial Basis Neural Network, Goal Oriented Radial Basis Architecture, Generalized Gaussian Network, Probabilistic Neural Network. Zemike Invariant Moment is utilized to extract a set of features from the aircraft image. Each of the architectures is used to'classify the image feature vectors. It is found that Generalized Gaussian Neural Network Architecture portrays perfect classification of 100% at a fastest time. Hence, the Generalized Gaussian Neural Network Architecture has a high potential to be adopted to classify images in a real-time environment.
机译:根据分类准确性和计算时间,对四种径向基网络体系结构的性能进行了评估。该体系结构是径向基神经网络,面向目标的径向基体系,广义高斯网络,概率神经网络。 Zemike不变矩用于从飞机图像中提取一组特征。每种架构都用于对图像特征向量进行分类。我们发现,广义高斯神经网络体系结构可以在最快的时间内描绘出100%的完美分类。因此,广义高斯神经网络架构在实时环境中具有很高的潜力可用于对图像进行分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号