首页> 外文OA文献 >Automatic brain tumor segmentation method using improved fuzzy C-means and fuzzy particle swarm optimization
【2h】

Automatic brain tumor segmentation method using improved fuzzy C-means and fuzzy particle swarm optimization

机译:改进的模糊C-均值和模糊粒子群算法的脑肿瘤自动分割方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The brain is the most important organ of the human body. It has a complicated structure, and a precise segmentation of brain cerebral tissues plays an important role for tumor detection. Since the manual segmentation is tedious and time-consuming, automatic segmentation becomes a more attractive subject to most researchers. Recently, many automatic segmentation methods have been proposed using clustering algorithms. Nonetheless, there are some remaining issues: noisy images and local optima. This study proposes a hybrid method by combining two clustering methods: FCM-FPSO and IFCM-PSO. In this research, a Gaussian filter is first applied as a pre-processing step to remove noises. Then, the enhanced image is segmented using a modified clustering method called Improved Fuzzy C-Means (IFCM). In IFCM, besides the target pixel intensity, the distance and intensity of the neighbours of the target pixel are used as the segmentation parameters. The presence of these parameters are helpful in case of the segmentation of noisy images. In order to prevent IFCM from falling into local optima, Fuzzy Particle Swarm Optimization (FPSO) is used to improve the parameter initialization step. FPSO is initialized by using a random membership function. The hybrid method is applied on thirty-one MRI brain tumor images collected from MICCAI 2012. The experimental results revealed that the F1-Measure of 79.98%, obtained by proposed hybrid method, is higher than that of the recent segmentation methods.
机译:大脑是人体最重要的器官。它具有复杂的结构,脑部脑组织的精确分割在肿瘤检测中起着重要的作用。由于手动分割是乏味且耗时的,因此自动分割对大多数研究人员而言更具吸引力。最近,已经提出了使用聚类算法的许多自动分割方法。尽管如此,仍然存在一些问题:噪点图像和局部最优。本研究通过结合两种聚类方法(FCM-FPSO和IFCM-PSO)提出了一种混合方法。在这项研究中,高斯滤波器首先被用作去除噪声的预处​​理步骤。然后,使用称为改进的模糊C均值(IFCM)的改进聚类方法对增强图像进行分割。在IFCM中,除了目标像素强度之外,目标像素的邻居的距离和强度还用作分割参数。这些参数的存在对有噪图像的分割很有帮助。为了防止IFCM陷入局部最优,使用模糊粒子群优化(FPSO)来改进参数初始化步骤。 FPSO通过使用随机隶属函数进行初始化。该混合方法应用于从MICCAI 2012收集的31幅MRI脑肿瘤图像。实验结果表明,通过提出的混合方法获得的F1-Measure值为79.98%,高于最近的分割方法。

著录项

  • 作者

    Zanganeh Saeed;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号