首页> 外文OA文献 >Voltage stability prediction on power system network via enhanced hybrid particle swarm artificial neural network
【2h】

Voltage stability prediction on power system network via enhanced hybrid particle swarm artificial neural network

机译:改进的混合粒子群人工神经网络在电力系统电压稳定预测中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rapid development of cities with constant increasing load and deregulation in electricity market had forced the transmission lines to operate near their threshold capacity and can easily lead to voltage instability and caused system breakdown. To prevent such catastrophe from happening, accurate readings of voltage stability condition is required so that preventive equipment and operators can execute security procedures to restore system condition to normal. This paper introduced Enhanced Hybrid Particle Swarm Optimization algorithm to estimate the voltage stability condition which utilized Fast Voltage Stability Index (FVSI) to indicate how far or close is the power system network to the collapse point when the reactive load in the system increases because reactive load gives the highest impact to the stability of the system as it varies. Particle Swarm Optimization (PSO) had been combined with the ANN to form the Enhanced Hybrid PSO-ANN (EHPSO-ANN) algorithm that worked accurately as a prediction algorithm. The proposed algorithm reduced serious local minima convergence of ANN but also maintaining the fast convergence speed of PSO. The results show that the hybrid algorithm has greater prediction accuracy than those comparing algorithms. High generalization ability was found in the proposed algorithm.
机译:随着负载不断增加和电力市场放松管制的城市的快速发展,迫使输电线路在其极限容量附近运行,并且很容易导致电压不稳定并导致系统故障。为了防止发生此类灾难,需要准确读取电压稳定条件,以便预防性设备和操作员可以执行安全程序以使系统条件恢复正常。本文介绍了增强型混合粒子群算法来估计电压稳定条件,该算法利用快速电压稳定指数(FVSI)来指示当系统中的无功负载因无功负载而增加时,电力系统网络到崩溃点的距离是多少当系统变化时,对系统的稳定性影响最大。粒子群优化(PSO)已与ANN结合在一起,形成了增强的混合PSO-ANN(EHPSO-ANN)算法,该算法可以准确地用作预测算法。该算法减少了人工神经网络的严重局部极小收敛性,同时也保持了粒子群算法的快速收敛速度。结果表明,混合算法的预测精度高于比较算法。该算法具有较高的泛化能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号