首页> 外文OA文献 >Predictioin of fruit quality using near-infrared VIA NARX model
【2h】

Predictioin of fruit quality using near-infrared VIA NARX model

机译:使用近红外VIA NARX模型预测水果品质

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nowadays, the awareness of health and safety among consumers has been increase. This scenario caused them become willing to pay more for high quality fruit products. However, it is not easy to grade fruits by using only our eyes. Therefore non-destructive fruits internal quality assessment technique is an area that both technology and market section concern about. The objectives of this project are to study about Near Infrared Spectroscopy (NIRS) as a fruit quality measurement method, to evaluate the use of NIRS for nondestructive measuring SSC of apples and to predict the best model of the measurement data by using Auto-Regressive with Exogenous Input (ARX) Model and Nonlinear Auto-Regressive with Exogenous Input (Nonlinear ARX) Model. The Near-Infrared (NIR) reflectance spectra and the soluble solids content (SSC) of apples data have been recorded before from an experiment. The impact of the orders or numbers of poles of the model has been investigated based on the performance (best fit) of the model. The ARX Model and Nonlinear ARX Model indicate excellent prediction performance of the model with the best fit value were 87.11% and 100% respectively.
机译:如今,消费者对健康和安全的认识已经提高。这种情况使他们变得愿意为高质量的水果产品支付更高的价格。但是,仅靠眼睛对水果进行分级并不容易。因此,无损水果内部质量评估技术是技术和市场领域都关注的领域。该项目的目的是研究近红外光谱法(NIRS)作为一种水果质量测量方法,评估NIRS在苹果的无损测量SSC中的应用,并通过使用Auto-Regressive和自动回归来预测最佳的测量数据模型外源输入(ARX)模型和带有外源输入的非线性自回归(N非线性ARX)模型。在进行实验之前,已经记录了苹果的近红外(NIR)反射光谱和可溶性固形物含量(SSC)数据。已基于模型的性能(最佳拟合)研究了模型阶数或极数的影响。 ARX模型和非线性ARX模型表明,最佳拟合值的模型具有出色的预测性能,分别为87.11%和100%。

著录项

  • 作者

    Mohamad Yatim Norfadzliah;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号