首页> 外文OA文献 >Flow regime identification and concentration distribution of solid particles flow in pipelines using electrodynamic tomography and artificial neural networks
【2h】

Flow regime identification and concentration distribution of solid particles flow in pipelines using electrodynamic tomography and artificial neural networks

机译:电动层析成像和人工神经网络识别管道中固体颗粒的流态和浓度分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Solid particles flow in a pipeline is a common means of transportation in industries. This is because pipeline transportation can avoid waste through spillage and minimizes the risk of handling of hazardous materials. Pharmaceutical industries, food stuff manufacturing industries, cement and chemical industries are few of the industries to exploit this transportation technique. For such industries, monitoring and controlling material flow through the pipe is an essential element to ensure efficiency and safety of the system. This paper presents electrical charge tomography which is one of the most efficient, robust, cost-effective and noninvasive tomographic methods of monitoring solid particles flow in a pipeline. Process flow data is captured fitting an array of 16-discrete electrodynamic sensors about the circumference of the flow pipe. The data captured is processed using two tomographic algorithms to obtain tomographic images of the flow. Then a neural network tool is used to improve image resolution and accuracy of measurements. The results from the above technique shows significant improvements in the pipe flow image resolution and measurements.
机译:管道中的固体颗粒流是工业中的一种常见运输方式。这是因为管道运输可以避免因溢出而造成的浪费,并使处理危险材料的风险降到最低。制药业,食品制造业,水泥和化学工业是利用这种运输技术的少数工业。对于此类行业,监视和控制通过管道的物料流是确保系统效率和安全性的基本要素。本文介绍了电荷层析成像技术,它是监测管道中固体颗粒流动的最有效,最鲁棒,经济高效且非侵入性的层析成像方法之一。通过围绕流管的圆周安装16个离散电动传感器阵列来捕获过程流量数据。使用两种断层成像算法处理捕获的数据,以获得流动的断层图像。然后使用神经网络工具来提高图像分辨率和测量精度。上述技术的结果表明,管道流动图像的分辨率和测量效果得到了显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号