首页> 外文OA文献 >The Application of a Genetic Algorithm to Estimate Material Properties for Fire Modeling from Bench-Scale Fire Test Data
【2h】

The Application of a Genetic Algorithm to Estimate Material Properties for Fire Modeling from Bench-Scale Fire Test Data

机译:遗传算法在实验规模火灾试验数据估计材料特性中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A methodology based on an automated optimization technique that uses a genetic algorithmud(GA) is developed to estimate the material properties needed for CFD-based fire growthudmodeling from bench-scale fire test data. The proposed methodology involves simulating audbench-scale fire test with a theoretical model, and using a GA to locate a set of model parametersud(material properties) that provide optimal agreement between the model predictions and theudexperimental data. Specifically, a genetic algorithm based on the processes of natural selectionudand mutation is developed and integrated with the NIST FDS v4.0 pyrolysis model for thickudsolid fuels. The combined genetic algorithm/pyrolysis model is used with Cone Calorimeter dataudfor surface temperature and mass loss rate histories to estimate the material properties of twoudcharring materials (redwood and red oak) and one thermoplastic material (polypropylene). Thisudis done by finding the parameter sets that provide near-optimal agreement between the modeludpredictions and experimental data given the constraints imposed by the underlying physicaludmodel and the accuracy with which the boundary and initial conditions can be specified. Theudmethodology is demonstrated here with the FDS pyrolysis model and Cone Calorimeter data, butudit is general and can be used with several existing fire tests and almost any pyrolysis model.udAlthough the proposed methodology is intended for use in CFD-based prediction of large-scaleudfire development, such calculations are not performed here and are recommended for futureudwork.
机译:开发了一种基于自动优化技术的方法,该方法使用遗传算法 ud(GA)来从工作台规模的火灾测试数据估算基于CFD的火灾生长 udmodel所需的材料属性。所提出的方法包括使用理论模型模拟 udbench规模的火灾测试,并使用GA定位一组模型参数 ud(材料属性),以提供模型预测和 udexperimental数据之间的最佳一致性。具体而言,开发了一种基于自然选择 udand突变过程的遗传算法,并将其与NIST FDS v4.0热解模型集成,用于稠化 ud固体燃料。组合的遗传算法/热解模型与锥量热仪数据 ud一起用于表面温度和质量损失率历史记录,以估算两种 charcharding的材料(红木和赤栎)和一种热塑性材料(聚丙烯)的材料性能。通过在给定的物理 udmodel施加约束以及可以指定边界和初始条件的精度的情况下,找到能够在模型预测和实验数据之间提供接近最佳一致性的参数集来完成此任务。 udmethodology已通过FDS热解模型和Cone Calorimeter数据进行了演示,但是 udit是通用的,可与几种现有的耐火测试和几乎所有热解模型一起使用。 ud尽管建议的方法旨在用于基于CFD的预测对于大型 udfire开发,此处不执行此类计算,建议将来进行 udwork。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号