首页> 外文OA文献 >Multi-objective optimization for school buildings retrofit combining artificial neural networks and life cycle cost
【2h】

Multi-objective optimization for school buildings retrofit combining artificial neural networks and life cycle cost

机译:结合人工神经网络和生命周期成本的学校建筑改造多目标优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The renovation of a school building should be regarded as a process of combining a number of variables and objectives, sometimes conflicting, including energy, indoor environmental quality and costs (initial, operational and maintenance), on a search for an "optimum solution". This multi-objective optimization procedure is particularly important in a time of severe economic crisis, with few available financial resources and, as such, their management and the investment decisions require great prudence from the decision maker. In this research a methodology to optimize the insulation thickness of external walls and roof, in the retrofit of two school buildings, is proposed. The school performance was defined considering two objectives: the annual heating load and the discomfort in the classrooms due to overheating. The calculation of the performance functions implies an annual simulation of the building and Artificial Neural Networks were training to approximate them. The minimization of the Life Cycle Cost of external walls and roof retrofit allowed the economic optimization of the insulation width.
机译:为寻求“最佳解决方案”,应该对学校建筑进行翻新,这是将许多变量和目标结合在一起的过程,有时会相互冲突,包括能源,室内环境质量和成本(初始,运营和维护)。在严重的经济危机,可用财务资源很少的情况下,这种多目标优化程序尤为重要,因此,其管理和投资决策需要决策者谨慎考虑。在这项研究中,提出了一种在两所学校建筑的改造中优化外墙和屋顶隔热厚度的方法。定义学校表现时要考虑两个目标:年度供暖负荷和教室因过热而造成的不适。性能函数的计算意味着对建筑物进行年度模拟,并且正在对人工神经网络进行训练以使其近似。外墙生命周期成本和屋顶改型的最小化允许隔热宽度的经济优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号