机译:IEE电子部:董事长致辞。电子学中的计算机辅助设计
机译:基于定量反馈理论的交互式计算机辅助控制设计:高速渡轮的垂直运动稳定问题
机译:高速VLSI的半导体衬底附近芯片上互连的计算机辅助分析
机译:尼日利亚大草原农产生态区降水预测的基于计算机的模型
机译:利用总可降水量异常作为强降水事件的预报手段。
机译:一项新的计算机辅助评分方法的开发和验证该方法可使用两家公司首次电子记录的血液测试结果和生命体征来预测两家急诊医院因急诊入院而导致院内死亡的风险:一项横断面研究
机译:EEG信号在EMD域S. S. Shafiul Alam,S中的非线性动力学使用非线性动力学。 M. Shafiul Alam,Aurangozeb和Syed Tarekshahriar摘要 - 基于EMD Chaos的方法,提出了对应于健康人的EEG信号,癫痫发作期间的癫痫患者和Seizureattacks。脑电图(EEG)首先被凭经上分解为内在模式功能(IMF)。这些IMF的非线性动力学在最大范围的指数(LLE)和相关尺寸(CD)方面是量化的。本域中的混沌分析应用于与健康人相对应的大型脑电图(Asepileptic患者)(两者都有癫痫发作)。因此,所获得的LLE和CD表展的价值可以从EMD领域的其他EEG信号中清晰地区分脑电图的表达展示。本拟议的方法可以帮助研究人员以预测癫痫发作的癫痫发作技术。索引术语 - 脑电图(EEG),仿真态分解(EMD),最大的Lyapunov指数(LLE),相关维度(CD),癫痫发作。作者与电气电子和电子工程公司,孟加拉国工程和技术大学,孟加拉国达卡 - 1000(电子邮件:imamul@eee.buet.ac.bd)pdf cite:s. m. shafiul Alam,s。 M. Shafiul Alam,Aurangozeb和Syed Tarek Shahriar,“EEG信号歧视在EMD领域的非线性动态,”计算机电气工程卷国际杂志。 4,不。 3,pp。326-330,2012,上一篇论文对情绪的看法,使用建设性的学习言论下一篇论文物理层障碍意识到OVPN连接选择机制版权所有©2008-2013。国际计算机科学与信息技术协会出版社(IACSIT Press)