首页> 外文OA文献 >Chaotic species based particle swarm optimization algorithms and its application in PCB components detection
【2h】

Chaotic species based particle swarm optimization algorithms and its application in PCB components detection

机译:基于混沌物种的粒子群优化算法及其在PCB元件检测中的应用

摘要

An improved particle swarm optimizer using the notion of chaos and species is proposed for solving a template matching problem which is formulated as a multimodal optimization problem. Template matching is one of the image comparison techniques. This technique is widely applied to determine the existence, location and alignment of a component within a captured image in the printed circuit board (PCB) industry where 100% quality assurance is always required. In this research, an efficient auto detection method using a multiple templates matching technique for PCB components detection is described. The new approach using chaotic species based particle swarm optimization (SPSO) is applied to the multi-template matching (MTM) process. To test its performance, the proposed Chaotic SPSO based MTM algorithm is compared with other approaches by using real captured PCB images. The Chaotic SPSO based MTM method is proven to be superior to other methods in both efficiency and effectiveness.
机译:为了解决模板匹配问题,提出了一种基于混沌和物种概念的改进的粒子群算法。模板匹配是图像比较技术之一。该技术被广泛应用于确定始终需要100%质量保证的印刷电路板(PCB)行业中捕获图像中组件的存在,位置和对准。在这项研究中,描述了一种使用多模板匹配技术进行PCB组件检测的有效自动检测方法。使用基于混沌物种的粒子群优化(SPSO)的新方法被应用于多模板匹配(MTM)过程。为了测试其性能,通过使用实际捕获的PCB图像,将提出的基于混沌SPSO的MTM算法与其他方法进行了比较。实践证明,基于混沌SPSO的MTM方法在效率和有效性方面均优于其他方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号