首页> 外文OA文献 >Analysis of the numerical dispersion of the 2-D ADI-FDTD method with higher order scheme
【2h】

Analysis of the numerical dispersion of the 2-D ADI-FDTD method with higher order scheme

机译:高阶格式二维ADI-FDTD方法的数值色散分析

摘要

The alternating direction implicit (ADI) FDTD method is an unconditionally stable method. The maximum time-step size is not limited by the Courant-Friedrich-Levy (CFL) condition. However, the numerical error such as numerical dispersion increases, when the ADI method is applied. It was proven that higher order scheme could reduce the numerical dispersion error in the conventional FDTD method. In this paper, we investigate the numerical dispersion property of the ADI-FDTD method with higher order scheme. It is found that the numerical dispersion error of the ADI-FDTD method with higher order scheme is smaller than the original ADI-FDTD method.
机译:交替方向隐式(ADI)FDTD方法是无条件稳定的方法。最大时间步长不受Courant-Friedrich-Levy(CFL)条件的限制。但是,当采用ADI方法时,诸如数字色散之类的数字误差会增加。事实证明,高阶方案可以减小传统FDTD方法中的数值色散误差。在本文中,我们研究了采用高阶方案的ADI-FDTD方法的数值色散特性。结果发现,采用高阶方案的ADI-FDTD方法的数值色散误差小于原始的ADI-FDTD方法。

著录项

  • 作者

    Sun MK; Tam WY;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号