首页> 外文OA文献 >Bioinspired, Stimuli-Responsive, Multifunctional Superhydrophobic Surface with Directional Wetting, Adhesion, and Transport of Water
【2h】

Bioinspired, Stimuli-Responsive, Multifunctional Superhydrophobic Surface with Directional Wetting, Adhesion, and Transport of Water

机译:具有生物启发性,对刺激敏感的多功能超疏水表面,具有定向润湿,粘附和水的输送

摘要

A novel smart stimuli responsive surface can be fabricated by the subsequent self-assembly of the graphene monolayer and the TiO2 nanofilm on various substrates, that is, fabrics, Si wafers, and polymer thin films. Multiscale application property can be achieved from the interfacial interaction between the hierarchical graphene/TiO2 surface structure and the underlying substrate. The smart surface possesses superhydrophobic property as a result of its hierarchical micro- to nanoscale structural roughness. Upon manipulating the UV induced hydrophilic conversion of TiO2 on graphene/TiO2 surface, smart surface features, such as tunable adhesiveness, wettability, and directional water transport, can be easily obtained. The existence of graphene indeed enhances the electron-hole pair separation efficiency of the photo-active TiO2, as the time required for the TiO2 superhydrophilic conversion is largely reduced. Multifunctional characteristics, such as gas sensing, droplet manipulation, and self-cleaning, are achieved on the smart surface as a result of its robust superhydrophobicity, tunable wettability, and high photo-catalytic activity. It is also revealed that the superhydrophilic conversion of TiO2 is possibly caused by the atomic rearrangement of TiO2 under UV radiation, as a structural transformation from {101} to {001} is observed after the UV treatment.
机译:可以通过石墨烯单层和TiO2纳米膜的随后自组装在各种基材(即织物,硅片和聚合物薄膜)上来制造新颖的智能刺激响应性表面。通过分层石墨烯/ TiO2表面结构与下面的基材之间的界面相互作用,可以实现多尺度应用性能。智能表面由于具有微米级至纳米级的分级结构粗糙度,因此具有超疏水性。通过控制紫外线在石墨烯/ TiO2表面上引发的TiO2亲水性转化,可以轻松获得智能的表面特征,例如可调的粘合性,润湿性和定向水传输。石墨烯的存在确实提高了光敏性TiO2的电子-空穴对分离效率,因为TiO2超亲水转化所需的时间大大减少了。智能表面具有强大的超疏水性,可调的可湿润性和高的光催化活性,因此可在智能表面上实现诸如气体感应,液滴操纵和自清洁等多功能特性。还揭示了TiO 2的超亲水转化可能是由于在UV辐射下TiO 2的原子重排引起的,因为在UV处理后观察到从{101}到{001}的结构转变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号