首页> 外文OA文献 >A novel multi-task TSK fuzzy classifier and its enhanced version for labeling-risk-aware multi-task classification
【2h】

A novel multi-task TSK fuzzy classifier and its enhanced version for labeling-risk-aware multi-task classification

机译:一种新颖的多任务TSK模糊分类器及其增强版本,可识别标记风险的多任务分类

摘要

While the Takagi-Sugeno-Kang (TSK) fuzzy system has been extensively applied to regression, the aim of this paper is to unveil its potential for classification, of multiple tasks in particular. First, a novel TSK fuzzy classifier (TSK-FC) is presented for pattern classification by integrating the large margin criterion into the objective function. Where multiple tasks are concerned, it has been shown that learning the tasks simultaneously yields better performance than learning them independently. In this regard, the capabilities of TSK-FC are exploited for multi-task learning, through the use of a multi-task TSK fuzzy classifier called MT-TSK-FC. MT-TSK-FC is a mechanism that uses not only the independent sample information of each task, but also the inter-task correlation information to enhance classification performance. However, as the number of tasks increases, the learning process is prone to labeling risk, which can lead to considerable degradation in the performance of pattern classification. To reduce the risk, a labeling-risk-aware mechanism is proposed to enhance the performance of the MT-TSK-FC, thus leading to the development of the labeling-risk-aware multi-task TSK fuzzy classifier called LRA-MT-TSK-FC. Since the three proposed fuzzy classifiers - TSK-FC, MT-TSK-FC, and LRA-MT-TSK-FC - can all be implemented by solving the corresponding QP problems, global optimal solutions are guaranteed. Experiments on multi-task synthetic and real image datasets are conducted to comprehensively demonstrate the effectiveness of the classifiers.
机译:尽管Takagi-Sugeno-Kang(TSK)模糊系统已广泛应用于回归,但本文的目的是揭示其分类潜力,尤其是多项任务。首先,提出了一种新颖的TSK模糊分类器(TSK-FC),它通过将大余量准则集成到目标函数中来进行模式分类。在涉及多个任务的情况下,已经表明,与独立学习任务相比,同时学习任务会产生更好的性能。在这方面,通过使用称为MT-TSK-FC的多任务TSK模糊分类器,TSK-FC的功能可用于多任务学习。 MT-TSK-FC是一种机制,它不仅使用每个任务的独立样本信息,而且还使用任务间相关信息来增强分类性能。但是,随着任务数量的增加,学习过程容易产生标签风险,这可能导致模式分类的性能显着下降。为了降低风险,提出了一种标记风险感知机制来增强MT-TSK-FC的性能,从而导致了标记风险感知多任务TSK模糊分类器的开发,该分类器称为LRA-MT-TSK -FC。由于提出的三个模糊分类器-TSK-FC,MT-TSK-FC和LRA-MT-TSK-FC都可以通过解决相应的QP问题来实现,因此可以保证全局最优解。进行了多任务合成和真实图像数据集的实验,以全面证明分类器的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号