首页> 外文OA文献 >Dynamic feature selection and coarse-to-fine search for content-based image retrieval
【2h】

Dynamic feature selection and coarse-to-fine search for content-based image retrieval

机译:动态特征选择和从粗到细搜索,用于基于内容的图像检索

摘要

We present a new approach to content-based image retrieval by addressing three primary issues: image indexing, similarity measure, and search methods. The proposed algorithms include: an image data warehousing structure for dynamic image indexing; a statistically based feature selection procedure to form flexible similarity measures in terms of the dominant image features; and a feature component code to facilitate query processing and guide the search for the best matching. The experimental results demonstrate the feasibility and effectiveness of the proposed method.
机译:通过解决三个主要问题,我们提出了一种基于内容的图像检索的新方法:图像索引,相似性度量和搜索方法。提出的算法包括:动态图像索引的图像数据仓库结构;基于统计的特征选择过程,以根据主要图像特征形成灵活的相似性度量;以及功能部件代码,以方便查询处理并指导搜索以实现最佳匹配。实验结果证明了该方法的可行性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号