首页> 外文OA文献 >Cauchy mutation based on objective variable of Gaussian particle swarm optimization for parameters selection of SVM
【2h】

Cauchy mutation based on objective variable of Gaussian particle swarm optimization for parameters selection of SVM

机译:基于高斯粒子群优化目标变量的柯西变异用于支持向量机参数选择

摘要

On the basis of the slow convergence of particle swarm algorithm (PSO) during parameters selection of support vector machine (SVM), this paper proposes a hybrid mutation strategy that integrates Gaussian mutation operator and Cauchy mutation operator for PSO. The combinatorial mutation based on the fitness function value and the iterative variable is also applied to inertia weight. The results of application in parameter selection of support vector machine show the proposed PSO with hybrid mutation strategy based on Gaussian mutation and Cauchy mutation is feasible and effective, and the comparison between the method proposed in this paper and other ones is also given, which proves this method is better than sole Gaussian mutation and standard PSO.
机译:基于支持向量机(SVM)参数选择过程中粒子群算法(PSO)的缓慢收敛性,提出了一种融合了高斯变异算子和柯西变异算子的混合变异策略。基于适应度函数值和迭代变量的组合变异也应用于惯性权重。在支持向量机参数选择中的应用结果表明,提出的基于高斯变异和柯西变异的混合变异策略的粒子群优化算法是可行和有效的,并与本文提出的方法进行了比较,证明了此方法优于唯一的高斯变异和标准PSO。

著录项

  • 作者

    Wu Q; Law R;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号