首页> 外文OA文献 >Superpixel-based active contour model for unsupervised change detection from satellite images
【2h】

Superpixel-based active contour model for unsupervised change detection from satellite images

机译:基于超像素的主动轮廓模型,用于卫星图像的无监督变化检测

摘要

This study proposes a superpixel-based active contour model (SACM) for unsupervised change detection from satellite images. The accuracy of change detection produced by the traditional active contour model suffers from the trade-off parameter. The SACM is designed to address this limitation through the incorporation of the spatial and statistical information of superpixels. The proposed method mainly consists of three steps. First, the difference image is created with change vector analysis method from two temporal satellite images. Second, statistical region merging method is applied on the difference image to produce a superpixel map. Finally, SACM is designed based on the superpixel map to detect changes from the difference image. The SACM incorporates spatial and statistical information and retains the accurate shapes and outlines of superpixels. Experiments were conducted on two data sets, namely Landsat-7 Enhanced Thematic Mapper Plus and SPOT 5, to validate the proposed method. Experimental results show that SACM reduces the effects of the trade-off parameter. The proposed method also increases the robustness of the traditional active contour model for input parameters and improves its effectiveness. In summary, SACM often outperforms some existing methods and provides an effective unsupervised change detection method.
机译:这项研究提出了基于超像素的主动轮廓模型(SACM),用于卫星图像的无监督变化检测。传统的主动轮廓模型产生的变化检测的精度受到折衷参数的影响。 SACM旨在通过合并超像素的空间和统计信息来解决此限制。所提出的方法主要包括三个步骤。首先,利用变化矢量分析方法从两个时间卫星图像创建差异图像。其次,对差异图像应用统计区域合并方法以生成超像素图。最后,基于超像素图设计SACM,以检测差异图像中的变化。 SACM合并了空间和统计信息,并保留了超像素的准确形状和轮廓。在两个数据集上进行了实验,即Landsat-7增强主题映射器Plus和SPOT 5,以验证所提出的方法。实验结果表明,SACM减少了折衷参数的影响。所提出的方法还提高了传统主动轮廓模型对输入参数的鲁棒性,并提高了其有效性。综上所述,SACM通常优于某些现有方法,并且提供了有效的无监督变更检测方法。

著录项

  • 作者

    Hao M; Shi W; Deng K; Feng Q;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号