首页> 外文OA文献 >Nonlinear system identification using optimized dynamic neural network
【2h】

Nonlinear system identification using optimized dynamic neural network

机译:基于优化动态神经网络的非线性系统辨识

摘要

In this paper, both off-line architecture optimization and on-line adaptation have been developed for a dynamic neural network (DNN) in nonlinear system identification. In the off-line architecture optimization, a new effective encoding scheme-Direct Matrix Mapping Encoding (DMME) method is proposed to represent the structure of neural network by establishing connection matrices. A series of GA operations are applied to the connection matrices to find the optimal number of neurons on each hidden layer and interconnection between two neighboring layers of DNN. The hybrid training is adopted to evolve the architecture, and to tune the weights and input delays of DNN by combining GA with the modified adaptation laws. The modified adaptation laws are subsequently used to tune the input time delays, weights and linear parameters in the optimized DNN-based model in on-line nonlinear system identification. The effectiveness of the architecture optimization and adaptation is extensively tested by means of two nonlinear system identification examples.
机译:在本文中,已经为非线性系统识别中的动态神经网络(DNN)开发了离线架构优化和在线自适应。在离线架构优化中,提出了一种新的有效编码方案-直接矩阵映射编码(DMME)方法,通过建立连接矩阵来表示神经网络的结构。将一系列GA运算应用于连接矩阵,以找到每个隐藏层上的神经元的最佳数量以及DNN的两个相邻层之间的互连。采用混合训练来发展体系结构,并通过将GA与修改后的自适应律相结合来调整DNN的权重和输入延迟。修改后的自适应定律随后用于在在线非线性系统识别中优化基于DNN的模型中调整输入时延,权重和线性参数。通过两个非线性系统识别示例,广泛测试了体系结构优化和自适应的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号