首页> 外文OA文献 >A fast evaluation method for RTS game strategy using fuzzy extreme learning machine
【2h】

A fast evaluation method for RTS game strategy using fuzzy extreme learning machine

机译:基于模糊极限学习机的RTS游戏策略快速评估方法

摘要

This paper proposes a fast learning method for fuzzy measure determination named fuzzy extreme learning machine (FELM). Moreover, we apply it to a special application domain, which is known as unit combination strategy evaluation in real time strategy (RTS) game. The contribution of this paper includes three aspects. First, we describe feature interaction among different unit types by fuzzy theory. Second, we develop a new set selection algorithm to represent the complex relation between input and hidden layers in extreme learning machine, in order to enable it to learn different fuzzy integrals. Finally, based on the set selection algorithm, we propose the FELM model for feature interaction description, which has an extremely fast learning speed. Experimental results on artificial benchmarks and real RTS game data show the feasibility and effectiveness of the proposed method in both accuracy and efficiency.
机译:本文提出了一种用于模糊测度确定的快速学习方法,称为模糊极限学习机(FELM)。此外,我们将其应用于特殊的应用领域,即实时策略(RTS)游戏中的单元组合策略评估。本文的贡献包括三个方面。首先,我们用模糊理论描述了不同单位类型之间的特征相互作用。其次,我们开发了一种新的集选择算法来表示极端学习机中输入层和隐藏层之间的复杂关系,以使其能够学习不同的模糊积分。最后,基于集合选择算法,提出了特征交互描述的FELM模型,具有极快的学习速度。在人工基准测试和真实RTS游戏数据上的实验结果表明,该方法在准确性和效率上都是可行和有效的。

著录项

  • 作者

    Li Y; Ng PHF; Shiu SCK;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号