首页> 外文OA文献 >Non-local sparse and low-rank regularization for structure-preserving image smoothing
【2h】

Non-local sparse and low-rank regularization for structure-preserving image smoothing

机译:非局部稀疏和低秩正则化用于保留结构的图像平滑

摘要

This paper presents a new image smoothing method that better preserves prominent structures. Our method is inspired by the recent non-local image processing techniques on the patch grouping and filtering. Overall, it has three major contributions over previous works. First, we employ the diffusion map as the guidance image to improve the accuracy of patch similarity estimation using the region covariance descriptor. Second, we model structure-preserving image smoothing as a low-rank matrix recovery problem, aiming at effectively filtering the texture information in similar patches. Lastly, we devise an objective function, namely the weighted robust principle component analysis (WRPCA), by regularizing the low rank with the weighted nuclear norm and sparsity pursuit with L1 norm, and solve this non-convex WRPCA optimization problem by adopting the alternative direction method of multipliers (ADMM) technique. We experiment our method with a wide variety of images and compare it against several state-of-the-art methods. The results show that our method achieves better structure preservation and texture suppression as compared to other methods. We also show the applicability of our method on several image processing tasks such as edge detection, texture enhancement and seam carving.
机译:本文提出了一种新的图像平滑方法,可以更好地保留突出的结构。我们的方法是受最近关于补丁分组和过滤的非本地图像处理技术的启发。总体而言,它对以前的作品有三大贡献。首先,我们将扩散图用作指导图像,以提高使用区域协方差描述符的补丁相似度估计的准确性。其次,我们将保留结构的图像平滑化模型作为低秩矩阵恢复问题,旨在有效过滤相似补丁中的纹理信息。最后,我们设计了一个目标函数,即加权鲁棒主成分分析(WRPCA),通过加权核范数对低秩进行正则化,并采用L1范数对稀疏度进行追求,并通过采用替代方向来解决此非凸WRPCA优化问题乘数法(ADMM)技术。我们用各种各样的图像进行实验,并将其与几种最新方法进行比较。结果表明,与其他方法相比,我们的方法实现了更好的结构保留和纹理抑制。我们还展示了我们的方法在几种图像处理任务(例如边缘检测,纹理增强和接缝雕刻)上的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号