首页> 外文OA文献 >Stock time series pattern matching : template-based vs. rule-based approaches
【2h】

Stock time series pattern matching : template-based vs. rule-based approaches

机译:股票时间序列模式匹配:基于模板的方法与基于规则的方法

摘要

One of the major duties of financial analysts is technical analysis. It is necessary to locate the technical patterns in the stock price movement charts to analyze the market behavior. Indeed, there are two main problems: how to define those preferred patterns (technical patterns) for query and how to match the defined pattern templates in different resolutions. As we can see, defining the similarity between time series (or time series subsequences) is of fundamental importance. By identifying the perceptually important points (PIPs) directly from the time domain, time series and templates of different lengths can be compared. Three ways of distance measure, including Euclidean distance (PIP-ED), perpendicular distance (PIP-PD) and vertical distance (PIP-VD), for PIP identification are compared in this paper. After the PIP identification process, both template- and rule-based pattern-matching approaches are introduced. The proposed methods are distinctive in their intuitiveness, making them particularly user friendly to ordinary data analysts like stock market investors. As demonstrated by the experiments, the template- and the rule-based time series matching and subsequence searching approaches provide different directions to achieve the goal of pattern identification.
机译:财务分析师的主要职责之一是技术分析。有必要在股价走势图中定位技术形态以分析市场行为。确实,存在两个主要问题:如何定义查询的那些优选模式(技术模式)以及如何以不同的分辨率匹配定义的模式模板。如我们所见,定义时间序列(或时间序列子序列)之间的相似性至关重要。通过直接从时域识别感知重要点(PIP),可以比较时间序列和不同长度的模板。本文比较了三种距离测量方法,包括欧氏距离(PIP-ED),垂直距离(PIP-PD)和垂直距离(PIP-VD),以进行PIP识别。在PIP识别过程之后,引入了基于模板和基于规则的模式匹配方法。所提出的方法在直观性方面与众不同,这使得它们对普通数据分析人员(如股票市场投资者)特别友好。实验证明,基于模板和基于规则的时间序列匹配和子序列搜索方法为实现模式识别的目标提供了不同的方向。

著录项

  • 作者

    Fu TC; Chung FL; Luk R; Ng CM;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号