首页> 外文OA文献 >Multi-stage identification scheme for detecting damage in cable-stayed Kap Shui Mun Bridge
【2h】

Multi-stage identification scheme for detecting damage in cable-stayed Kap Shui Mun Bridge

机译:斜拉式汲水门大桥破损多阶段识别方案

摘要

This study aims to develop a multi-stage scheme for damage detection for the cable-stayed Kap Shui Mun Bridge (Hong Kong) by using measured modal data from an on-line instrumentation system, and to perform a damage-identification simulation based on a precise three-dimensional finite element model of the bridge. This multi-stage diagnosis strategy aims at successive detection of the occurrence, location and extent of the structural damage. In the first stage, a novelty detection technique based on auto-associative neural networks is proposed for damage alarming. This method needs only a series of measured natural frequencies of the structure in intact and damage states, and is inherently tolerant of measurement error and uncertainties in ambient conditions. The goal in the second stage is to identify the deck segment or section that contains damaged member(s). For this purpose, the bridge deck is partitioned into 149 segments defined by 150 sections, and normalized index vectors derived from modal curvature and modal flexibility are presented for damage localization. The third stage consists in identifying specific damage member(s) and damage extent by using a multi-layer perceptron neural network. Only the structural members occuring in the identified segment are considered in the network input, and the combined modal parameters are used as the input vector for damage extent identification.
机译:这项研究的目的是利用在线仪器系统中测得的模态数据,为斜拉式汲水门大桥(香港)开发一种多阶段损伤检测方案,并基于桥梁的精确三维有限元模型。这种多阶段诊断策略旨在连续检测结构损坏的发生,位置和程度。在第一阶段,提出了一种基于自联想神经网络的新颖性检测技术,用于损伤预警。此方法仅需要在完整状态和损坏状态下测量一系列结构的固有频率,并且固有地可以承受环境条件下的测量误差和不确定性。第二阶段的目标是确定包含受损构件的甲板区段或区段。为此,将桥面板划分为由150个部分定义的149个分段,并提供了从模态曲率和模态柔韧性派生的归一化索引矢量以进行损伤定位。第三阶段是通过使用多层感知器神经网络来识别特定的损坏成员和损坏程度。在网络输入中仅考虑出现在识别出的段中的结构构件,并且组合的模态参数用作损伤程度识别的输入向量。

著录项

  • 作者

    Ko JM; Sun ZG; Ni YQ;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号