首页> 外文OA文献 >Palmprint recognition based on translation invariant Zernike moments and modular neural network
【2h】

Palmprint recognition based on translation invariant Zernike moments and modular neural network

机译:基于平移不变Zernike矩和模块化神经网络的掌纹识别

摘要

This paper introduces a new approach for palmprint recognition, using translation invariant Zernike moments (TIZMs) as palm features, and a modular neural network (MNN) as classifier. Translation invariance is added to the general Zernike moments which have a good property of rotation invariance. The pattern set is set up by eight-order TIZMs with 25 dimensions. A modular neural network is presented in order to decompose the palmprint recognition task into a series of smaller and simpler two-class sub-problems. Simulations have been done on the Polyu_PalmprintDB database, which is composed of 3200 palmprints (10 palmprints/person). Experimental results demonstrate that higher identification rate and recognition rate are achieved by the proposed method in contrast with the straight-line segments (SLS) based method and the Fuzzy Directional Element Energy Feature (FDEEF) method.
机译:本文介绍了一种新的掌纹识别方法,该方法将平移不变的Zernike矩(TIZM)作为手掌特征,并使用模块化神经网络(MNN)作为分类器。平移不变性被添加到具有良好的旋转不变性的一般Zernike矩中。模式集由具有25个尺寸的八阶TIZM设置。为了将掌纹识别任务分解为一系列较小和较简单的两类子问题,提出了一种模块化神经网络。在Polyu_PalmprintDB数据库上进行了仿真,该数据库由3200个掌纹(每人10个掌纹)组成。实验结果表明,与基于直线段(SLS)的方法和模糊方向元素能量特征(FDEEF)的方法相比,所提方法具有更高的识别率和识别率。

著录项

  • 作者

    Li Y; Wang K; Li T; Zhang D;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 chi/zho
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号