首页> 外文OA文献 >A biased random key genetic algorithm approach for inventory-based multi-item lot-sizing problem
【2h】

A biased random key genetic algorithm approach for inventory-based multi-item lot-sizing problem

机译:基于库存的多项目批量问题的有偏随机密钥遗传算法

摘要

In this article, we have explored multi-item capacitated lot-sizing problem by addressing the backlogging and associated high penalty costs incurred. At the same time, penalty cost for exceeding the resource capacity has also been taken into account. Penalty cost related to both backlogging and overutilizing capacity has been included in main objective function. The main objective is to achieve such a solution that minimizes the total cost. The ingredients of total cost are the setup cost, production cost, inventory holding cost and aforementioned both the penalty costs. To solve this computationally complex problem, a less explored algorithm ''biased random key genetic algorithm'' has been applied. To the best of our knowledge, this research presents the first application of biased random key genetic algorithm to a lot-sizing problem. To test the effectiveness of proposed algorithm, extensive computational tests are conducted. The encouraging results show that the proposed algorithm is an efficient tool to tackle such complex problems. A comparative study with other existing heuristics shows the supremacy of proposed algorithm in terms of quality of the solution, number of generation and computational time.
机译:在本文中,我们通过解决积压和相关的高额罚款成本,探索了多项目容量批量问题。同时,还考虑了超出资源容量的罚款成本。与积压和过度利用容量相关的罚款成本已包含在主要目标函数中。主要目的是实现一种使总成本最小化的解决方案。总成本的组成部分是设置成本,生产成本,库存持有成本以及上述两个罚款成本。为了解决这个计算复杂的问题,已经应用了较少探索的算法“有偏随机密钥遗传算法”。据我们所知,本研究提出了有偏随机密钥遗传算法在批量问题中的首次应用。为了测试所提出算法的有效性,进行了广泛的计算测试。令人鼓舞的结果表明,所提出的算法是解决此类复杂问题的有效工具。与其他现有启发式方法的比较研究表明,该算法在解的质量,生成次数和计算时间方面具有至高无上的地位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号