首页>
外文OA文献
>Spatial-attraction-based Markov random field approach for classification of high spatial resolution multispectral imagery
【2h】
Spatial-attraction-based Markov random field approach for classification of high spatial resolution multispectral imagery
展开▼
机译:基于空间吸引力的马尔可夫随机场方法用于高空间分辨率多光谱图像分类
展开▼
免费
页面导航
摘要
著录项
引文网络
相似文献
相关主题
摘要
This letter presents a novel spatial-attraction-based Markov random field (MRF) (SAMRF) approach for high spatial resolution multispectral imagery (HSRMI) classification. First, the initial class label and class membership for each pixel are obtained by applying the maximum likelihood classifier (MLC) classification for the HSRMI. Second, to reduce the oversmooth classification in the traditional MRF, an adaptive weight MRF model is introduced by integrating the spatial attraction model into the traditional MRF. Finally, the initial classification map, generated in the first step, will be refined though the SAMRF regularization. Two different experiments were performed to evaluate the performance of the SAMRF, in comparison with standard MLC and MRF. Experimental results indicate that the SAMRF method achieved the highest accuracy, hence, providing an effective spectral-spatial classification method for the HSRMI.
展开▼