首页> 外文OA文献 >Spatial-attraction-based Markov random field approach for classification of high spatial resolution multispectral imagery
【2h】

Spatial-attraction-based Markov random field approach for classification of high spatial resolution multispectral imagery

机译:基于空间吸引力的马尔可夫随机场方法用于高空间分辨率多光谱图像分类

摘要

This letter presents a novel spatial-attraction-based Markov random field (MRF) (SAMRF) approach for high spatial resolution multispectral imagery (HSRMI) classification. First, the initial class label and class membership for each pixel are obtained by applying the maximum likelihood classifier (MLC) classification for the HSRMI. Second, to reduce the oversmooth classification in the traditional MRF, an adaptive weight MRF model is introduced by integrating the spatial attraction model into the traditional MRF. Finally, the initial classification map, generated in the first step, will be refined though the SAMRF regularization. Two different experiments were performed to evaluate the performance of the SAMRF, in comparison with standard MLC and MRF. Experimental results indicate that the SAMRF method achieved the highest accuracy, hence, providing an effective spectral-spatial classification method for the HSRMI.
机译:这封信提出了一种新颖的基于空间吸引力的马尔可夫随机场(MRF)(SAMRF)方法,用于高空间分辨率多光谱图像(HSRMI)分类。首先,通过为HSRMI应用最大似然分类器(MLC)分类来获得每个像素的初始分类标签和分类成员。其次,为了减少传统MRF中的过度平滑分类,通过将空间吸引力模型集成到传统MRF中来引入自适应权重MRF模型。最后,第一步中生成的初始分类图将通过SAMRF正则化进行完善。与标准MLC和MRF相比,进行了两个不同的实验来评估SAMRF的性能。实验结果表明,SAMRF方法达到了最高的准确度,因此为HSRMI提供了一种有效的光谱空间分类方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号