首页> 外文OA文献 >Forecasting with model selection or model averaging : a case study for monthly container port throughput
【2h】

Forecasting with model selection or model averaging : a case study for monthly container port throughput

机译:通过模型选择或模型平均进行预测:每月集装箱港口吞吐量的案例研究

摘要

An accurate short-term prediction of time series data is critical to operational decision-making. While most forecasts are made based on one selected model according to certain criteria, there are developments that harness the advantages of different models by combining them together in the prediction process. Following on from existing work, this paper applies six model selection criteria and six model averaging (MA) criteria to a structural change vector Autoregressive model, and compares them in terms of both the theoretical background and empirical results. A case study of the monthly container port throughput forecasting for two competing ports shows that, in general, the model averaging methods perform better than the model selection methods. In particular, the leave-subject-out cross-validation MA method is the best in the sense of achieving the lowest average of mean-squared forecast errors.
机译:时间序列数据的准确短期预测对于运营决策至关重要。尽管大多数预测是根据某些标准基于一个选定的模型进行的,但是有一些开发可以通过在预测过程中将它们组合在一起来利用不同模型的优势。在现有工作的基础上,本文将六个模型选择标准和六个模型平均(MA)标准应用于结构变化矢量自回归模型,并从理论背景和实证结果两个方面进行比较。对两个竞争港口的每月集装箱港口吞吐量预测的案例研究表明,总体而言,模型平均方法的性能优于模型选择方法。特别地,从实现均方预测误差的最低平均值的意义上讲,离开主题交叉验证MA方法是最好的。

著录项

  • 作者

    Gao Y; Luo M; Zou G;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号