首页> 外文OA文献 >A novel topic model for automatic term extraction
【2h】

A novel topic model for automatic term extraction

机译:一种新颖的自动词条抽取主题模型

摘要

Automatic term extraction (ATE) aims at extracting domain-specific terms from a corpus of a certain domain. Termhood is one essential measure for judging whether a phrase is a term. Previous researches on termhood mainly depend on the word frequency information. In this paper, we propose to compute termhood based on semantic representation of words. A novel topic model, namely i-SWB, is developed to map the domain corpus into a latent semantic space, which is composed of some general topics, a background topic and a documents-specific topic. Experiments on four domains demonstrate that our approach outperforms the state-of-the-art ATE approaches.
机译:自动术语提取(ATE)旨在从特定域的语料库中提取特定于域的术语。术语是判断短语是否为术语的一项重要措施。以前关于术语的研究主要依靠词频信息。在本文中,我们提议基于单词的语义表示来计算术语。开发了一种新颖的主题模型,即i-SWB,将领域语料库映射到一个潜在的语义空间,该语义空间由一些通用主题,一个背景主题和一个特定于文档的主题组成。在四个领域进行的实验表明,我们的方法优于最新的ATE方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号