首页> 外文OA文献 >Robust ear identification using sparse representation of local texture descriptors
【2h】

Robust ear identification using sparse representation of local texture descriptors

机译:使用局部纹理描述符的稀疏表示进行稳健的耳朵识别

摘要

Automated personal identification using localized ear images has wide range of civilian and law-enforcement applications. This paper investigates a new approach for more accurate ear recognition and verification problem using the sparse representation of local gray-level orientations. We exploit the computational simplicity of localized Radon transform for the robust ear shape representation and also investigate the effectiveness of local curvature encoding using Hessian based feature representation. The ear representation problem is modeled as the sparse coding solution based on multi-orientation Radon transform dictionary whose solution is computed using the convex optimization approach. We also study the nonnegative formulation such problem, to address the limitations from the regularized optimization problem, in the sparse representation of localized ear features. The log-Gabor filter based approach and the localized Radon transform based feature representation has been used as baseline algorithm to ascertain the effectiveness of the proposed approach. We present experimental results from publically available UND and IITD ear databases which achieve significant improvement in the performance, both for the recognition and authentication problem, and confirm the usefulness of proposed approach for more accurate ear identification.
机译:使用本地化的耳朵图像进行自动个人识别具有广泛的民用和执法应用。本文研究了一种使用局部灰度方向的稀疏表示来更准确地识别和验证耳朵的新方法。我们为鲁棒的耳朵形状表示利用了局部Radon变换的计算简单性,并且还研究了基于基于Hessian的特征表示的局部曲率编码的有效性。将耳朵表示问题建模为基于多方向Radon变换字典的稀疏编码解决方案,该解决方案是使用凸优化方法来计算的。我们还研究了非负公式这样的问题,以解决局部化耳朵特征的稀疏表示中正则化优化问题的局限性。基于对数-Gabor滤波器的方法和基于局部Radon变换的特征表示已被用作基线算法,以确定所提出方法的有效性。我们提供来自公开可用的UND和IITD耳朵数据库的实验结果,这些结果在识别和身份验证问题上均实现了性能上的显着改善,并确认了所提出的方法对于更准确的耳朵识别的有用性。

著录项

  • 作者

    Kumar A; Chan TST;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号