首页> 外文OA文献 >New hierarchical approach for microaneurysms detection with matched filter and machine learning
【2h】

New hierarchical approach for microaneurysms detection with matched filter and machine learning

机译:具有匹配滤波器和机器学习功能的微动脉瘤新分层检测方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microaneurysms are regarded as the first signs of diabetic retinopathy (DR), but the microaneurysms are not clear in the color retinal images, and many researches were studied to detect and locate these lesions. In this paper, a new hierarchical computing-aided diagnosis approach is proposed for the microaneurysms detection by using the multi-scale and multi-orientation sum of matched filter (MMMF) and machine learning, where 37 dimensional features are extracted from each candidate. Furthermore, several classifiers such as the k-nearest neighbor (kNN), local linear discrimination analysis (LLDA) and support vector machine (SVM) are modified to distinguish the true microaneurysms from the false ones, which is a typical unbalanced classification problem. The effectiveness of the proposed method is verified through the training set of a publicly available database, and the experiment results show that the proposed method has better detection performance including the receiver operating characteristic (ROC) curve and the free-response receiver operating characteristic (FROC) curve. Moreover, the proposed method with 37 dimensional features outperforms that with other features and has a sensitivity from 1/8 to 8 with the average of all seven points being 0.286 tested on the same database.
机译:微动脉瘤被认为是糖尿病性视网膜病变(DR)的最初征兆,但是在彩色视网膜图像中微动脉瘤尚不清楚,因此人们进行了许多研究来检测和定位这些病变。本文提出了一种新的基于层次计算的诊断方法,该方法利用匹配滤波器(MMMF)和机器学习的多尺度和多方向总和,从每个候选对象中提取37维特征。此外,还对几种分类器进行了修改,例如k最近邻(kNN),局部线性判别分析(LLDA)和支持向量机(SVM),以区分真实的微动脉瘤和错误的微动脉瘤,这是一个典型的不平衡分类问题。通过公开数据库的训练集验证了该方法的有效性,实验结果表明该方法具有更好的检测性能,包括接收器工作特性曲线和自由响应接收器工作特性。 )曲线。此外,所提出的具有37维特征的方法优于其他特征,并且灵敏度为1/8至8,所有七个点的平均值在同一数据库上进行了0.286测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号