首页> 外文OA文献 >Swarm intelligence algorithms for yard truck scheduling and storage allocation problems
【2h】

Swarm intelligence algorithms for yard truck scheduling and storage allocation problems

机译:群算法用于院子卡车调度和存储分配问题

摘要

In this paper we focus on two scheduling problems in container terminal: (i) the Yard Truck Scheduling Problem (YTSP) which assigns a fleet of trucks to transport containers between the QCs and the storage yard to minimize the makespan, (ii) the integrated Yard Truck Scheduling Problem and Storage Allocation Problem (YTS-SAP) which extends the first problem to consider storage allocation strategy for discharging containers. Its object is to minimize the total delay for all jobs. The second model is improved to consider the truck ready time. Due to the computational intractability, two recently developed solution methods, based on swarm intelligence technique, are developed for problem solution, namely, particle swarm optimization (PSO) and bacterial colony optimization (BCO). As these two algorithms are originally designed for continuous optimization problems, we proposed a particular mapping method to implement them for YTSP and YTS-SAP, both of which are discrete optimization problems. Through comparing the PSO algorithms and BCO algorithm with GA by an experiment conducted on different scale instances, we can draw a conclusion that LPSO perform best in YTSP while BCO perform best in YTS-SAP.
机译:在本文中,我们关注集装箱码头的两个调度问题:(i)堆场卡车调度问题(YTSP),该问题分配一组卡车在质量控制中心和仓储场之间运输集装箱,以最大程度地缩短工期,(ii)集成堆场调度问题和存储分配问题(YTS-SAP)扩展了第一个问题,以考虑卸货集装箱的存储分配策略。其目的是使所有作业的总延迟最小化。改进了第二种模型,以考虑卡车的准备时间。由于计算的难点性,基于群体智能技术的两种最近开发的解决方法被开发用于解决问题,即粒子群优化(PSO)和细菌菌落优化(BCO)。由于这两种算法最初是针对连续优化问题而设计的,因此我们提出了一种特殊的映射方法来将它们实现为YTSP和YTS-SAP,它们都是离散的优化问题。通过在不同规模实例上进行的实验比较PSO算法和BCO算法与GA,我们可以得出结论,LPSO在YTSP中表现最佳,而BCO在YTS-SAP中表现最佳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号