首页> 外文OA文献 >A spectral feature based approach for face recognition with one training sample
【2h】

A spectral feature based approach for face recognition with one training sample

机译:一种基于光谱特征的人脸识别方法与训练样本

摘要

In this paper, a novel spectral feature image-based 2DLDA (two-dimensional linear discriminant analysis) ensemble algorithm is proposed for face recognition with one sample image per person. In our algorithm, multi-resolution spectral feature images are constructed to represent the face images. The proposed method is inspired by our finding that, among these spectral feature images, features extracted from some orientations and scales using 2DLDA are not sensitive to variations of illumination and expression. In order to maintain the positive characteristics of these filters and to make correct category assignments, the strategy of classifier committee learning (CCL) is designed to combine the results obtained from different spectral feature images. Experimental results on the standard databases demonstrate the feasibility and efficiency of the proposed method.
机译:本文提出了一种基于光谱特征图像的二维线性判别分析集成算法,用于人脸识别一个人脸图像。在我们的算法中,多分辨率光谱特征图像被构造为代表面部图像。我们的发现启发了所提出的方法,在这些光谱特征图像中,使用2DLDA从某些方向和比例中提取的特征对照明和表达的变化不敏感。为了保持这些滤波器的积极特性并做出正确的类别分配,设计了分类委员会学习(CCL)策略,以结合从不同光谱特征图像获得的结果。在标准数据库上的实验结果证明了该方法的可行性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号