首页> 外文OA文献 >An intelligent computer method for automatic mosaic and segmentation of tracer fiber images for yarn structure analysis
【2h】

An intelligent computer method for automatic mosaic and segmentation of tracer fiber images for yarn structure analysis

机译:智能化的示踪纤维图像自动拼接和分割计算机方法,用于纱线结构分析

摘要

Tracer fiber measurement is a popular and effective method to study yarn internal structure. In this method, a series of consecutive yarn images are stitched into panorama, and yarn boundaries and tracer fiber are extracted for further analysis. Currently, the image mosaic and segmentation of tracer fiber images largely involve manual operation because the existing image processing methods are generally not capable in most cases. Therefore, this study aims to develop an intelligent computer method for automatic mosaic and segmentation of tracer fiber images. In this study, an extended QRS complex detection method is developed for tracer fiber detection. In the image mosaic, a decision function, integrating several matching functions extracted from the tracer fiber and gradient image, is proposed to identify the optimal stitching position. The QRS complex is a name for the combination of Q wave, R wave and S wave on an electrocardiogram (ECG), which reflects the rapid depolarization of the right and left ventricles. In image segmentation, a baseline fitting method is used to eliminate the effect of uneven background for identifying yarn boundaries from the binary image. Finally, an objective method is proposed to evaluate the qualities of the image mosaic and segmentation of the proposed method.
机译:示踪纤维测量是研究纱线内部结构的一种流行而有效的方法。在这种方法中,将一系列连续的纱线图像缝合成全景图,并提取纱线边界和示踪纤维以进行进一步分析。当前,示踪纤维图像的图像镶嵌和分割在很大程度上涉及手动操作,因为在大多数情况下,现有的图像处理方法通常不可用。因此,本研究旨在开发一种智能计算机方法,用于对示踪纤维图像进行自动镶嵌和分割。在这项研究中,扩展的QRS复杂检测方法被开发用于示踪剂纤维检测。在图像拼接中,提出了结合从示踪剂纤维和梯度图像中提取的多个匹配函数的决策函数,以识别最佳拼接位置。 QRS复合体是心电图(ECG)上Q波,R波和S波的组合的名称,它反映了左右心室的快速去极化。在图像分割中,使用基线拟合方法来消除背景不均匀的影响,以便从二值图像中识别纱线边界。最后,提出了一种客观的方法来评估图像镶嵌和分割方法的质量。

著录项

  • 作者

    Li SY; Xu BG; Tao XM; Chi ZR;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号