首页> 外文OA文献 >Empirical analysis of object-oriented design metrics for predicting high and low severity faults
【2h】

Empirical analysis of object-oriented design metrics for predicting high and low severity faults

机译:预测高严重性故障和低严重性故障的面向对象设计指标的经验分析

摘要

In the last decade, empirical studies on object-oriented design metrics have shown some of them to be useful for predicting the fault-proneness of classes in object-oriented software systems. This research did not, however, distinguish among faults according to the severity of impact. It would be valuable to know how object-oriented design metrics and class fault-proneness are related when fault severity is taken into account. In this paper, we use logistic regression and machine learning methods to empirically investigate the usefulness of object-oriented design metrics, specifically, a subset of the Chidamber and Kemerer suite, in predicting fault-proneness when taking fault severity into account. Our results, based on a public domain NASA data set, indicate that 1) most of these design metrics are statistically related to fault-proneness of classes across fault severity, and 2) the prediction capabilities of the investigated metrics greatly depend on the severity of faults. More specifically, these design metrics are able to predict low severity faults in fault-prone classes better than high severity faults in fault-prone classes.
机译:在过去的十年中,对面向对象设计指标的实证研究表明,其中一些对预测面向对象软件系统中类的故障倾向有用。但是,这项研究没有根据影响的严重程度来区分故障。当考虑到故障严重性时,知道面向对象的设计指标和故障倾向性之间的关系将是很有价值的。在本文中,我们使用逻辑回归和机器学习方法来实证研究面向对象设计指标(特别是Chidamber和Kemerer套件的子集)在考虑故障严重性时预测故障倾向性方面的有用性。我们基于公共领域NASA数据集的结果表明,1)这些设计指标中的大多数都与整个故障严重性类别的故障倾向统计相关,并且2)被调查指标的预测能力在很大程度上取决于故障严重性。故障。更具体地说,这些设计指标能够比易错类别中的高严重性故障更好地预测易错类别中的低严重性故障。

著录项

  • 作者

    Zhou Y; Leung H;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号