首页> 外文OA文献 >Neural network modeling of vehicle discharge headway at signalized intersection: Model descriptions and results
【2h】

Neural network modeling of vehicle discharge headway at signalized intersection: Model descriptions and results

机译:信号交叉口车辆出行距离的神经网络建模:模型描述和结果

摘要

Vehicle discharge headway at signalized intersections is of great importance in junction analysis. However, it is very difficult to simulate the discharge headway of individual queued vehicle because of the great variations in the driver behaviors, vehicle characteristics and traffic environment. The current study proposes a neural network (NN) approach to simulate the queued vehicle discharge headway. A computer-based three-layered (NN) model was developed for the estimation of discharge headway. The widely used backpropagation algorithm has been utilized in training the NN model. The NN model was trained, validated with field data and then compared with other headway models. It was found that the NN model performed better. Model sensitivity analysis was conducted to further validate the applicability of the model. Results showed that the NN model could produce reasonable discharge headway estimates for individual vehicles.
机译:信号交叉口的车辆出行距离在路口分析中非常重要。然而,由于驾驶员行为,车辆特性和交通环境的巨大变化,很难模拟单个排队车辆的排放行程。当前的研究提出了一种神经网络(NN)方法来模拟排队的车辆出车行程。建立了基于计算机的三层(NN)模型,用于估算排放距离。广泛使用的反向传播算法已被用于训练NN模型。训练了NN模型,并使用现场数据进行了验证,然后将其与其他进展模型进行了比较。发现NN模型表现更好。进行了模型敏感性分析,以进一步验证模型的适用性。结果表明,NN模型可以为单个车辆产生合理的排放行程估计。

著录项

  • 作者

    Tong HY; Hung WT;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号