首页> 外文OA文献 >Content-based image retrieval in P2P networks with bag-of-features
【2h】

Content-based image retrieval in P2P networks with bag-of-features

机译:具有功能包的P2P网络中基于内容的图像检索

摘要

Recently, the Bag-of-Features (BoF) model has emerged as a popular solution to scalable content-based image retrieval (CBIR), due to great success of the Bag-of-Words (BoW) model in textual information processing. While most of the existing algorithms on CBIR in P2P networks focus on indexing high dimensional low level features, we propose to address such an issue by employing the BoF model. However, it is not straightforward due to the fact that the BoF model depends on a global codebook and it is very challenging to create and maintain such a global codebook across the whole P2P network. We design a novel online sampling mechanism to create a codebook with low network cost. Since the number of features in each image is large, compared to a text query generally consisting of several keywords, information exchange between nodes for each query image generates high network cost. In order to further reduce the network cost, we implement two static index pruning policies to limit the document length and the returned term weights. Our comprehensive experimental results show that our proposed approach is able to scale up to medium size networks with performance comparable to the centralized environment.
机译:最近,由于词袋(BoW)模型在文本信息处理中取得了巨大的成功,特征包(BoF)模型已经成为可伸缩的基于内容的图像检索(CBIR)的流行解决方案。虽然P2P网络中有关CBIR的大多数现有算法都集中在索引高维低层特征上,但我们建议通过采用BoF模型来解决这一问题。但是,由于BoF模型依赖于全局代码簿,因此这并不容易,并且在整个P2P网络中创建和维护这样的全局代码簿非常具有挑战性。我们设计了一种新颖的在线采样机制来创建具有较低网络成本的密码本。由于每个图像中的特征数量很大,与通常由几个关键字组成的文本查询相比,每个查询图像的节点之间的信息交换会产生较高的网络成本。为了进一步降低网络成本,我们实施了两种静态索引修剪策略以限制文档长度和返回的术语权重。我们全面的实验结果表明,我们提出的方法能够扩展到中等规模的网络,其性能可与集中式环境媲美。

著录项

  • 作者

    Zhang L; Wang Z; Feng D;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号